

Migration Guide
r3

Ingres

A00193-1E

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, without
the prior written consent of CA. This documentation is proprietary information of CA and protected by the copyright
laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

 2004 Computer Associates International, Inc.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Contents iii

 Contents

Chapter 1: Introduction
Planning the Upgrade ... 1–1

New Ingres Features .. 1–1
Upgrade Types ... 1–2

Upgradedb Method ... 1–2
Unload/Reload Method ... 1–2

Ingres Releases ... 1–3
From Releases Prior to Ingres 6.4 ... 1–3
From Ingres 6.4 ... 1–3
From Releases Newer than Ingres 6.4 ... 1–4
From a 32-bit to a 64-bit Release .. 1–4
To Member-Aligned Alpha OpenVMS (axm.vms) .. 1–5
Binary Level Support.. 1–5

Installations and Hardware .. 1–5
Possible Hardware Setups ... 1–6

Overview of Upgrade Procedure ... 1–6
Application Issues .. 1–7

The Test Plan for Applications ... 1–8
Keys to Success ... 1–8
Debugging ... 1–9

Chapter 2: Getting Started
Note on Platform-specific Examples .. 2–1
Upgrading from Ingres 6.4... 2–1
Creating a New Ingres Development Installation .. 2–2
Preparing Your Applications... 2–3

New Reserved Keywords .. 2–3
Report-Writer Syntax Change .. 2–4
Report-Writer Runtime Parameter Errors.. 2–4

Loading Databases and Applications into the New Installation 2–5

iv Migration Guide

Creating Users ..2–5
Moving Databases ...2–5
Moving Catalogs ..2–6
Moving Distributed Option Databases...2–6
The system_maintained Column Name ..2–6
Compiling Applications..2–7
Testing ...2–7

Preparing Your System ..2–8
System Monitoring Shellscripts ...2–8
Checkpoint Template Changes..2–8
Other Checkpoint and Rollforward Changes ...2–9
Backup and Restore..2–9
Shared Library Search Path ...2–9
UNIX Kernel Parameters ... 2–10

Testing ... 2–11
Performance Testing ... 2–11
System Administrator Procedures... 2–11
Practicing the Upgrade... 2–11
Before the Live Upgrade ... 2–12

OpenROAD 4.0 Image File Formats ... 2–12

Chapter 3: Upgrading Using Upgradedb
Upgradedb Upgrade Procedure ..3–1

Step 1: Disable User Access ...3–1
Step 2: Disable Remote Command Server ..3–2
Step 3: Shut Down Ingres and Back Up System ...3–2
Step 4: [Each DB Including iidbdb] Clean the Database ..3–3
Step 5: [Each DB] Record Database Information...3–3
Step 6: [Each DB Including iidbdb] Checkpoint and Turn Off Journaling3–3
Step 7: Shut Down Ingres...3–4
Step 8: Preserve Site Modifications ..3–4

Visual DBA Configurations ...3–5
Step 9: Delete Install Directory ..3–5
Step 10: Install Ingres ..3–5

Upgrading to Older Versions That Require a Patch..3–6
Step 11: Create imadb Database ...3–6
Step 12: Restore Site Modifications ..3–7
Step 13: Start Ingres..3–7
Step 14: Run Upgradedb Utility ...3–7
Step 15: Review Ingres Configuration..3–8

Contents v

Step 16: [Each DB] Reapply Optimizer Statistics (Optional).................................... 3–8
Step 17: [Each DB including iidbdb] Checkpoint the Database 3–8
Step 18: Install Upgraded Applications.. 3–8

Chapter 4: Upgrading Using Unload/Reload
Two Variations ... 4–1
Unload/Reload Upgrade Procedure .. 4–2

Step 1: [Each DB Including iidbdb] Create Unload Directories 4–2
Step 2: [Each DB] Run Unloaddb ... 4–2
Step 3: [Each DB] Check for Obsolete Users .. 4–3
Step 4: [Each DB Including iidbdb] Checkpoint the Database (Optional) 4–3
Step 5: Disable User Access .. 4–3
Step 6: Disable Remote Command Server.. 4–4
Step 7: Shut Down Ingres and Back Up System... 4–4
Step 8: [Each DB] Unload the Database .. 4–5
Step 9: [Each DB] Print Optimizer Statistics (Optional) .. 4–5
Step 10: [Each DB] Record Database Information ... 4–5
Step 11: Record Database Privileges... 4–6
Step 12: Save Users, Groups, and Roles.. 4–6
Step 13: [Each DB] Destroy the Database .. 4–7
Step 14: Clean iidbdb Database ... 4–7
Step 15: Shut Down Ingres ... 4–7
Step 16: Disable Ingres Startup ... 4–7
Step 17: Preserve Site Modifications... 4–8

Visual DBA Configurations .. 4–9
Step 18: Delete Install Directory .. 4–9
Step 19: Install Ingres .. 4–9

Upgrading to Older Versions That Require a Patch 4–10
Step 20: Create imadb Database ... 4–10
Step 21: Restore Site Modifications... 4–11
Step 22: Review Ingres Configuration .. 4–11
Step 23: Set Up Ingres Net .. 4–11
Step 24: Start Ingres .. 4–12
Step 25: Recreate Users, Groups, and Roles ... 4–12
Step 26: Recreate Locations ... 4–12
Step 27: [Each DB] Recreate the Database ... 4–13
Step 28: [Each DB] Extend the Database .. 4–13
Step 29: Recreate Database Privileges .. 4–13
Step 30: [Each DB] Fix FE Reload Script .. 4–14
Step 31: [Each DB] Reload the Database .. 4–15

vi Migration Guide

Step 32: [Each DB] Upgrade Front-End Catalogs .. 4–15
Step 33: [Each DB] Reapply Optimizer Statistics .. 4–15
Step 34: [Each DB including iidbdb] Checkpoint the Database................................ 4–15
Step 35: Install Upgraded Applications .. 4–16

Appendix A: Considerations for Alpha OpenVMS
OpenVMS Requirements.. A–1
Installing Ingres.. A–1

Mounting the CD... A–1
Running VMSINSTAL .. A–2
Known Installation Issues ... A–2

Schema Checking .. A–3
Rebuilding Applications .. A–3

Building Member_Aligned Against Ingres 2.6 or r3 .. A–3
For C Applications.. A–4
For COBOL Applications .. A–5

Appendix B: Upgrading from Ingres 6.4
Considerations for Ingres 6.4 .. B–1

Preparing Your Applications .. B–1
UPDATE . . . FROM Semantics Change ... B–1
Decimal Constant Semantics Change ... B–2
Greater Sensitivity to BYREF Errors .. B–2
Journaling On by Default .. B–3
Greater Sensitivity to Arithmetic Errors ... B–3
4GL TABLE_KEY Type Conversions.. B–3
User-Defined Data Type Changes .. B–3
Summary .. B–4

Preparing Your System.. B–4
Ingres Startup and Shutdown .. B–4
ingprenv Replaces ingprenv1 .. B–4
Archiver Exit Shellscript... B–4
Transaction Log Size .. B–5

Upgrading from 6.4 Using Upgradedb ... B–5
Procedure.. B–6
Step 1: [Each DB Including Distributed Option DDBs] Create Unload Directory B–6
Step 2: [Each DB Including Distributed Option DDBs] Run Unloaddb B–6
Step 3: [Each DB Including Distributed Option DDBs] Check for Obsolete Users................ B–7

Contents vii

Step 4: [Each DB] Edit the Unloaddb Output...B–7
Step 5: [Each DB Including iidbdb] Checkpoint the Database (Optional)B–8
Step 6: Disable User Access ..B–8
Step 7: Shut Down Ingres and Back Up System...B–8
Step 8: [Each DB] Print Optimizer Statistics (Optional) ..B–9
Step 9: [Each DB] Remove Non-table Objects...B–9
Step 10: [Each DB] Record Database Information ..B–10
Step 11: Clean iidbdb Database ..B–11
Step 12: [Each DB Including iidbdb] Checkpoint and Turn Off JournalingB–11
Step 13: Record Ingres Configuration ..B–11
Step 14: Shut Down Ingres ..B–12
Step 15: Disable Ingres Startup ..B–12
Step 16: Preserve Site Modifications..B–12
Step 17: Fix Logins ...B–13
Step 18: Save Ingres Settings ..B–13
Step 19: Clean Up Ingres 6.4...B–14
Step 20: Create Work Location...B–14
Step 21: Install Ingres ...B–15

Upgrading to Versions That Require a Patch ..B–15
Step 22: Create imadb Database ...B–15
Step 23: Restore Site Modifications...B–16
Step 24: Start Ingres ..B–16
Step 25: Run Upgradedb Utility ...B–16
Step 26: Configure Ingres ...B–17
Step 27: Set Up Ingres Net ..B–17
Step 28: [Each DB] Recreate Objects ..B–18
Step 29: [Each DB] Reapply Storage Structures ..B–18
Step 30: [Each DB] Reapply Optimizer Statistics...B–18
Step 31: [Each DB including iidbdb] Checkpoint the DatabaseB–19
Step 32: Install Upgraded Applications...B–19

Upgrading from 6.4 Using Unload/Reload ...B–19
Two Upgrade Types..B–20
Front-end Catalogs...B–20
Procedure ...B–20
Step 1: [Each DB Including iidbdb] Create Unload DirectoryB–21
Step 2: [Each DB] Run Unloaddb ..B–21
Step 3: [Each DB] Check for Obsolete Users ...B–21
Step 4: [Each DB Including iidbdb] Checkpoint the Database (Optional)B–22
Step 5: Disable User Access ...B–22
Step 6: Shut Down Ingres and Back Up System..B–22
Step 7: [Each DB] Unload the Database ...B–23

viii Migration Guide

Step 8: [Each DB] Print Optimizer Statistics (Optional) B–23
Step 9: [Each DB] Record Database Information... B–23
Step 10: Record Database Privileges ... B–24
Step 11: Save Users, Groups, and Roles .. B–24
Step 12: [Each DB] Destroy the Database ... B–25
Step 13: Clean iidbdb Database ... B–25
Step 14: Record Ingres Configuration .. B–25
Step 15: Shut Down Ingres.. B–26
Step 16: Disable Ingres Startup.. B–26
Step 17: Preserve Site Modifications ... B–26
Step 18: Fix Logins... B–27
Step 19: Save Ingres Settings .. B–28
Step 20: Clean Up Ingres 6.4 .. B–28
Step 21: Create Work Location .. B–28
Step 22: Install Ingres .. B–29

Upgrading to Versions That Require a Patch ... B–29
Step 23: Create imadb Database ... B–29
Step 24: Restore Site Modifications .. B–30
Step 25: Configure Ingres... B–30
Step 26: Set Up Ingres Net .. B–31
Step 27: Start Ingres.. B–31
Step 28: Recreate Users, Groups, and Roles... B–31
Step 29: Recreate Locations ... B–32
Step 30: [Each DB] Recreate the Database .. B–32
Step 31: [Each DB] Extend the Database.. B–33
Step 32: Recreate Database Privileges .. B–33
Step 33: [Each DB] Fix FE Reload Script .. B–34
Step 34: [Each DB] Reload the Database.. B–34
Step 35: [Each DB] Upgrade Front-end Catalogs .. B–34
Step 36: [Each DB] Reapply Optimizer Statistics .. B–35
Step 37: [Each DB including iidbdb] Checkpoint the Database................................ B–35
Step 38: Install Upgraded Applications .. B–35

Corresponding Parameter Names... B–35
Parameters in 6.4 rundbms.opt File.. B–36
Locking and Logging System Parameters .. B–38

Appendix C: Troubleshooting Upgradedb Problems
Troubleshooting Tips ... B–1

Contents ix

Appendix D: Keywords
Table Key ... D–1
Reserved Single Keywords ... D–2
Reserved Double Keywords ... D–12
Other Reserved Keywords... D–22

Appendix E: Features Introduced in Advantage Ingres 2.6
User-Visible Language Enhancements ..E–1

Row Producing Procedures ..E–1
SUBSTRING Function ...E–2
New Aggregate Functions ...E–2

Increased Maximum Size of Character Data Types ...E–2
User-Visible DBA Enhancements ...E–3

Usermod Utility ..E–3
Auditdb Utility ...E–3
Copydb Utility..E–3
Raw Location Support...E–4
GatherWrite Threads ..E–4
XML Import/Export Utility ..E–4
Journal Analyzer..E–4
Import Assistant ..E–4
Automated Creation of Location Directories ...E–5
Remote Command Server Enhancements..E–6
Microsoft Transaction Server Support ...E–6
Concurrent Rollback ..E–6

Internal Performance Enhancements..E–6
Aggregate Sort Nodes ...E–6
Composite Histograms ..E–7
Optimizer Support for Hash Joins ..E–7

Locking System Performance Improvements ..E–7
Preallocated RSB/LKBs..E–7
Miscellaneous Locking System Improvements ...E–7

Logging System Performance Improvements ..E–8
Buffer Manager Performance Improvements ..E–8
Operating System Integration ..E–8

64-Bit Operating Systems ..E–8
Operating System Thread Implementation on Linux..E–9

Ingres ICE Enhancements..E–9
Development Environment ..E–9

x Migration Guide

ODBC Enhancements... E–9
Supported Functions.. E–9
Unavailable Features... E–10

JDBC Enhancements... E–10
Support for Unicode... E–10
New Character Sets to Support Euro Currency Symbol.. E–11

Appendix F: Features Introduced in Ingres II 2.5
Sort Enhancements ... F–2

QEF Sort Enhancements... F–2
DMF Sort Enhancements .. F–2
Parallel Sort Techniques... F–3

ANSI/ISO Constraint Enhancements... F–3
Large Cache Support ... F–4
Dynamic Write Behind Threads.. F–5
Partitioned Transaction Log File ... F–5
Optimizer and Optimizedb Enhancements.. F–6
Read-only Database Support .. F–6
New SQL Functionality ... F–7

Order By/Group By Expression.. F–7
CASE Expression ... F–8
Parallel Index Creation.. F–8
SELECT Enhancement .. F–8
Bit-wise Operator Support... F–9
Aggregate Functions.. F–9
Miscellaneous Functions .. F–9

Extended Date Support .. F–10
Large File Support... F–10
Large Catalogs .. F–10
Row Locking for System Catalogs... F–10
Update Mode Locking ... F–11

Value Locking for Serializable Transaction with Equal Predicate F–11
Query Optimization and Execution Enhancements ... F–11
Ingres Star Features ... F–11
Ingres Net Features.. F–12
Ingres ICE Features.. F–12

Security .. F–12
Session Management... F–13
Storage Management .. F–13
Macro Language Extensions .. F–13

Contents xi

Visual DBA Features ... F–14
Replicator Enhancements... F–14

Generic Replicator Server ... F–14
Increased Replicator Concurrency ... F–14

OpenAPI Enhancements.. F–15

Appendix G: Features Introduced in Ingres II 2.0
Variable Page Size ... G–2

New Page Format for Larger Page Size... G–2
Larger Tuple Support .. G–2
Distributed Multi-Cache Management ... G–3
Enhanced Performance of Locking/Logging and Buffer Manager G–3
Interval Based Deadlock Detection .. G–3
Row Level Locking and Transaction Isolation Levels .. G–4
Alter Table Support .. G–5
Async I/O Support .. G–5
Parallel Backup and Restore .. G–6

Parallel Checkpointing to Disk .. G–6
Parallel Checkpointing to Tape .. G–6
Parallel Rollforwarddb from Disk.. G–6
Parallel Rollforwarddb from Tape ... G–6

Fast Load Support ... G–7
R-tree Support: A Spatial Index for Ingres II 2.0 ... G–7
Spatial Data Types and Operators ... G–7
Statement Level Rules.. G–8
Temporary Tables as Procedure Parameters .. G–8
Other Optimizer Enhancements ... G–9
Operating System Thread Support... G–9
Table Cache Priorities ... G–10
Transaction Access Mode.. G–10
Soundex Function... G–10
Ingres Star Features ... G–10
Ingres Net Features ... G–11

Protocol Bridge Support ... G–11
Data-Stream Compression Support ... G–11
SNA Duplex Support.. G–12
DECNet/OSI Support ... G–12

Ingres OpenAPI Enhancements .. G–12
Multi-Threaded OpenAPI.. G–12
OpenAPI Support for Autocommit ... G–13

xii Migration Guide

Enhanced OpenAPI Support for Database Events... G–13
Ingres ICE Features.. G–13
Visual DBA Features .. G–14
Server-based Replication ... G–15

Index

Introduction 1–1

Chapter

1 Introduction

This guide, together with the other guides in the documentation set, will assist in
the planning and execution of a successful upgrade of Ingres. By taking
advantage of the enhanced features and functions at the next level, you can
obtain superior support services and reap the benefits associated with running
the latest version of this product.

Planning the Upgrade
The most important part of any upgrade is to prepare a detailed plan. A detailed
plan can prevent problems, which is the key to any upgrade. The plan should
include items as simple as how long it will take to complete a backup and how to
verify that the data is complete and secure.

The plan should then be tested, preferably with a copy of the production system
data. Testing reveals areas that may cause problems during the upgrade of the
production system.

You should then implement the plan, but only after preliminary testing is
complete.

The best strategy for upgrading is to first implement any compatibility fixes in
the current environment. When the databases and applications are ready, test
them in that environment, practice the upgrade, and then perform the upgrade.

Do not use any new features until the upgrade is successfully implemented.
Doing this keeps to a minimum the number of variables at each step.

New Ingres Features

Included as appendixes in this guide are new features for Advantage Ingres 2.6,
Ingres II 2.5, and Ingres II 2.0. The information is provided so that after the
upgrade is complete and running successfully for several days, you can begin
using the new features.

Upgrade Types

1–2 Migration Guide

Upgrade Types
There are two options for upgrading your production systems:

■ The upgradedb utility

■ The unload/reload method

You can mix the two upgrade types, upgrading some databases while reloading
others.

Upgradedb Method

The upgradedb utility allows for a fast, in-place upgrade path for an older
version Ingres database, with no additional disk space requirements. Because
upgradedb is faster, it is typically the recommended way of upgrading.

Preparing for a safe and reliable upgradedb, however, can take time, especially
when upgrading from Ingres 6.4. Older versions of upgradedb have some
specific issues that must be accommodated.

Databases using the system-maintained logical key feature are best upgraded
using upgradedb. Tables that contain SYSTEM_MAINTAINED table_key or
object_key columns cannot be safely unloaded and reloaded without additional
work. The reload step generates all new logical key values. If there are other
tables referencing the logical key columns, the new values must somehow be
manually propagated to those other tables.

Unload/Reload Method

A database unload/reload ensures a clean start with a fresh database. Depending
on the kind of table data, additional disk space may be needed to do the unload
and reload; this could be as large as three to five times the space of the database
that is to be upgraded. For instance, compressed tables with wide CHAR or
VARCHAR columns can expand substantially when unloaded.

The unload/reload process takes longer than upgradedb, thus increasing the
downtime of the production system. However, it ensures a clean final
installation.

A database that has been running for years, perhaps surviving a number of
system crashes and hardware failures, may have suffered hidden damage that
can confuse the upgradedb utility. For example, a database that is used by a
small department or group of people may not be maintained as well as a
production database. Such a database may have worktables owned by a user
who no longer exists, or may be missing table data files. An unload/reload
upgrade may be a better choice for this database.

Ingres Releases

Introduction 1–3

The typical unload/reload upgrade uses the original Ingres installation as a base.
The system databases iidbdb and imadb are upgraded in-place with upgradedb,
even if user databases are unloaded/reloaded. A variation of the unload/reload
method uses a brand new installation (perhaps even on a different machine).
When this is done, additional work is needed to transfer iidbdb information
(users, groups, roles, and database and installation privileges) to the new
installation.

Ingres Releases
The release of Ingres that you are upgrading from affects the type of upgrade
you choose.

From Releases Prior to Ingres 6.4

You must use an unload/reload upgrade if you are starting with a version of
Ingres prior to release 6.4. Furthermore, you must install Ingres into a new, fresh
installation; the original installation cannot be upgraded in-place.

From Ingres 6.4

You can use either method to upgrade from Ingres 6.4. Regardless of the method
chosen, however, an upgrade from Ingres 6.4 requires more planning and
preparation than upgrades from newer versions.

Significant preparation is needed to use upgradedb safely against a 6.4 database.
The procedures set forth in this guide allow you to use the upgradedb method
successfully.

On the other hand, since most 6.4 databases are several years old, you may
choose to use an unload/reload upgrade. Keep in mind that an unload/reload
upgrade takes substantially more time and resources.

Ingres Releases

1–4 Migration Guide

From Releases Newer than Ingres 6.4

Upgradedb is the recommended type when upgrading from OpenIngres 1.2 or
2.0, Ingres II 2.0 or 2.5, or Advantage Ingres 2.6. The upgrade is internally much
simpler than the upgrade from 6.4. In addition, there are fewer application-level
incompatibilities among newer versions.

An unload/reload upgrade is possible, but is slower and requires more disk
space than an upgradedb upgrade.

OpenIngres 1.2: If you are starting with OpenIngres 1.2, any tables having long
varchar, long binary, or long spatial data must be unloaded under 1.x and
reloaded into Advantage Ingres 2.6. The format of the blob extension tables has
changed. The remainder of the database can be upgraded with upgradedb;
however, it is probably simplest to use a full unload/reload upgrade with any
databases containing “long” datatypes.

From a 32-bit to a 64-bit Release

You can upgrade your 32-bit Ingres database for use with 64-bit Ingres by
running the upgradedb utility. The upgrade process that is specific to converting
a database from the 32-bit to 64-bit architecture redefines views, rules, integrities,
and QUEL permits. The data in user tables is not affected by the 32-bit to 64-bit
upgrade.

The upgradedb program does the following:

■ Redefines the standard catalog views (iitables, iicolumns, and so on)

■ Generates an SQL script to drop and redefine views, rules, integrities, and
QUEL permits

■ Executes the SQL script

The generated SQL script can be found in
$II_SYSTEM/ingres/files/upgradedb/DBNAME/DBNAME.i0.

The SQL output can be found in $II_SYSTEM/ingres/files/upgradedb/DBA-
NAME/DBNAME.o01.

If your database contains an object that cannot be redefined, the upgradedb may
fail to redefine all objects. You can use the SQL script and output in
$II_SYSTEM/ingres/files/upgradedb to determine the point of failure. If
necessary, contact technical support for assistance.

Installations and Hardware

Introduction 1–5

To Member-Aligned Alpha OpenVMS (axm.vms)

If you are using OpenVMS on Alpha hardware, and are upgrading to the
member-aligned version of Ingres (axm.vms) from a non-member-aligned
version (axp.vms), you must use unload/reload. Upgradedb is not available due
to shifts in table data positions caused by the new alignment. For instructions,
see the appendix “Considerations for Alpha OpenVMS.”

Binary Level Support

Ingres 3 provides support for applications built against previous versions of
Ingres, back to and including Ingres 6.4.

You can run applications built with any version of OpenIngres 1.x or Ingres II
2.x, accessing an Ingres 3 server, without rebuilding the application.

Applications built against Ingres 6.4 expect to access an older version of the
Ingres message files. You can run applications built with Ingres 6.4 against an
Ingres 3 server, as long as either the application is running across Ingres Net, or
Ingres 3 was installed with the 6.4 message files. However, in all cases, we
recommend that you rebuild all applications with Ingres 3.

Installations and Hardware
For a safe and orderly upgrade, at least four Ingres installations are needed:

■ Original version production installation

■ Original version development installation

■ Installation for testing the upgrade

■ New version development installation for preparing and testing applications

Four machines can be used, putting each installation on its own machine. More
commonly, however, the two development installations share a machine. Since
there is usually some traffic between these two installations during preparation,
sharing a machine is convenient.

Note: If you are using Windows, you need a separate machine for each
installation. Versions prior to Advantage Ingres 2.6 do not support multiple
installations on one Windows machine.

If possible, keep the installations away from the production machine. If there is
no hardware available for the above installations, you may temporarily need
additional hardware.

Overview of Upgrade Procedure

1–6 Migration Guide

Possible Hardware Setups

Three Machines The recommended minimum hardware setup is three machines:

■ Development (both old and new versions)

■ Test

■ Production

Two Machines It is possible—but not recommended—to use two machines:

■ Development (possibly including a test installation)

■ Production

The latter configuration is not preferred, as the test installation shares a machine
with development, so it will not mimic your production installation as closely. In
addition, the more installations a machine has, the more chance for error.

One Machine Using a single machine for an upgrade is possible, but not recommended. There
is too great a likelihood of accidentally working in the wrong installation and
damaging production.

Note: There is no remote installation procedure for Ingres. The machine must
have local media support (CD-ROM or tape); otherwise, you will have to copy
the distribution files from wherever the CD-ROM or tape drive is situated.

Overview of Upgrade Procedure
The following describes the overall strategy for the upgrade.

Tip: Back up all data before starting.

1. Copy—Duplicate the databases to be upgraded into the new version
development installation, and make a copy of all associated applications. It is
important that your original version development installation remain; if the
upgrade is unpredictably delayed, you will still have your original
environment in which to fix mission-critical applications, if necessary.

2. Change—Make any changes needed to the database definition or the
application source code so that they function with the new version. If you are
upgrading from Ingres 6.4, this step can be lengthy. If you are upgrading
from a more recent version (for example, from Ingres II 2.0 to Advantage
Ingres 2.6), few or no changes may be necessary.

Application Issues

Introduction 1–7

All compatibility changes will be reflected back into the original version
development installation. Thus, if the upgrade is delayed for some reason, no
work will be lost.

3. Test Applications—Test your critical applications in the new-version
development environment. Any problems or performance issues can be fixed
before your production upgrade. The fix will nearly always be compatible
with your original version as well, and therefore can be reflected back into
your standard development environment.

4. Practice the Upgrade—When the application environment is ready, practice
an upgrade using the test installation. Ideally, the test installation should be
a duplicate of production. The trial upgrade should be repeated as often as
necessary to achieve a trouble-free upgrade.

Tip: While practicing the upgrade, cease application development. You
want the live upgrade to run exactly like the practice one, without
involving new and untested factors.

5. Perform the Upgrade—Upgrade to the production system.

Application Issues
Before starting the upgrade, take an application and database inventory and
make sure that every application can be rebuilt, starting from scratch. You must
have complete and current source code for all applications because you will
eventually recompile your applications under the new version. If the source code
does not match what users are running, problems can result.

If you find an application that cannot be rebuilt, test the original executable
under Ingres as soon as possible. If the application has no upward compatibility
issues (for example, reserved words), it may be possible to run the old
application against an Ingres installation and database. Otherwise, you will have
to recreate the application or do without it.

Generally, try to synchronize the test and live Ingres upgrades with an
appropriate time in the application life cycle. If application development is
underway, you must plan how to coordinate new development with Ingres
compatibility. Upgrades starting with newer versions (OpenIngres 1.2 or newer)
may be able to move quickly enough to avoid any issue. Preparing an upgrade
from Ingres 6.4 can take long enough to rule out a full stop in development.

One site, for example, addressed the timing issue by synchronizing Ingres
compatibility with a code release. Then, development was converted to Ingres,
while an Ingres 6.4 “bug fix” installation was maintained on a different machine.

Application Issues

1–8 Migration Guide

The Test Plan for Applications

You must test your applications with the new version of Ingres before
performing a production upgrade. The time and cost of testing every function in
every application can be prohibitive. Fortunately, such testing is rarely necessary.
A proper test plan can reduce testing time to as little as a week or two, even in
the hardest case (upgrading from 6.4).

Keys to Success

Keys to a successful test plan are:

■ Test only the most important parts of the application system.

■ Fix problems found after the upgrade as quickly as possible.

The important question is not, “How important is this function?” but rather
“How long can we live without this function?”

One successful testing approach divides application functions into three
categories, as follows:

1. Functions that are business critical, and must be operational immediately
after the upgrade. No delay is permitted.

Examples may include customer order entry, shipping, and production order
release functions.

2. Functions that are important, but the business can survive their loss for a few
hours after the upgrade.

Examples may include most inquiries and accounting functions, and high-
visibility management reports, especially if management is made aware of
the possibility of a one-time delay.

3. Functions that can be broken for a day or two without serious impact.

Examples may include reports, analysis functions, and end-of-period
routines.

The first category of functions must be tested thoroughly. The second category
should be tested as time and resources permit. The third category can usually be
spot-checked.

Application Issues

Introduction 1–9

Debugging

If you properly execute your test plan, all critical functions will work after the
upgrade; less critical functions, however, may contain bugs. Be prepared to fix
these bugs for a period after the upgrade. (Two weeks is usually long enough.)
During this time, avoid scheduling new feature development. Have streamlined
change control procedures ready, so that fixes can be installed quickly if a
problem occurs.

Getting Started 2–1

Chapter

2 Getting Started

This chapter describes how to move your existing development installation into a
new Ingres development installation. In the new installation, you will test your
databases and applications and make any necessary changes to ensure that they
work correctly.

It describes how to:

■ Create a development installation of the latest release of Ingres

■ Prepare your applications

■ Load your old version development databases and applications into the new
development installation

■ Prepare your system

■ Test

■ Practice the upgrade

The goal is to test thoroughly in the new development environment so that you
can confidently perform the upgrade to the production system. The upgrade to
the production system is described in subsequent chapters.

Note on Platform-specific Examples
While most of the examples used in this guide are specific to UNIX, the concepts
described also apply to the Windows environment. For information on
upgrading in the VMS environment, see the appendix “Considerations for Alpha
OpenVMS.”

Upgrading from Ingres 6.4
When migrating from Ingres 6.4, there are additional considerations not
discussed in this chapter. Before performing the tasks in this chapter, see
Considerations for Ingres 6.4 in the appendix “Upgrading from Ingres 6.4.”

Creating a New Ingres Development Installation

2–2 Migration Guide

Creating a New Ingres Development Installation
This section describes how to install the latest release of Ingres into a
development installation.

UNIX
The following procedure assumes that the development computer will support
both the original and new version Ingres installations.

To install Ingres on the development machine, perform the following steps:

1. Create a new Ingres directory in a location with sufficient disk space. In this
example, the directory is called /ing26/ingres.

2. Execute the following commands:

mkdir /ing26/ingres

chmod 755 /ing26/ingres

3. Set the environment to the original and new development installations. To
do this, create two scripts; in this example, the scripts are named “setold”
and “setnew.”

Here are example scripts for the C shell. You may need to adjust them for
your specific installation.

For example, the PATH settings may be different, and LD_LIBRARY_PATH
may be named LIBPATH or SHLIB_PATH, depending on the platform. In
this example, the “old” installation is an Ingres 6.4 installation.
setold:
setenv II_SYSTEM /ing64
set path=(. /usr/local/bin /bin /usr/ucb /usr/sbin /usr/openwin/bin
$II_SYSTEM/ingres/bin $II_SYSTEM/Ingres/utility /usr/ccs/bin)
set inst=`ingprenv1 II_INSTALLATION`
setenv LD_LIBRARY_PATH /usr/lib:/usr/openwin/lib
set prompt=`whoami`.`uname -n`"[$inst]% "
echo "Switching to original Ingres 6.4 [$inst] installation"

setnew:
setenv II_SYSTEM /ing26
set path=(. /usr/local/bin /bin /usr/ucb /usr/sbin /usr/openwin/bin
$II_SYSTEM/ingres/bin $II_SYSTEM/ingres/utility /usr/ccs/bin)
set inst=`ingprenv II_INSTALLATION`
setenv LD_LIBRARY_PATH /usr/lib:/usr/openwin/lib:$II_SYSTEM/ingres/lib
set prompt=`whoami`.`uname -n`"[$inst]% "
echo "Switching to new 2.6 [$inst] installation"

4. If required, define aliases in the C shell or shell functions in the Bourne or
Korn shell to invoke the setold and setnew scripts.

For example:
alias setold source ~ingres/setold
alias setnew source ~ingres/setnew

5. Use the “setnew” alias to switch to the new Ingres environment, and change
directory to $II_SYSTEM/ingres.

Preparing Your Applications

Getting Started 2–3

Follow the installation instructions to install Ingres.

Note: Do not use the same data, checkpoint, journal, dump, or log directories as
the original installation; the directories can, however, be on the same disks.

From Ingres 6.4 or 1.2

Take the time to investigate the new management facilities. Also, note that Ingres
looks different in a “ps” listing. On a platform that supports OS threads or
asynchronous I/O, there are no I/O slaves. The DMFRCP process, the Recovery
Server, has been replaced by another IIDBMS process.

Preparing Your Applications
While some applications created under your original version will run unchanged
under the new Ingres, you will probably have to change some applications. None
of the changes, however, is hard.

As part of the initial step of moving a copy of applications and databases to the
new Ingres installation, you must check for:

■ New reserved words

■ Report-Writer syntax change, if upgrading from Ingres 6.4

New Reserved Keywords

A database cannot be built on an Ingres installation until reserved keyword
conflicts are corrected.

Check for and fix reserved word conflicts. Also, check for reserved word conflicts
in application code, specifically in dynamically created tables and views.

Ingres has a number of additional reserved keywords, mostly for support of the
SQL additions. If words like level, key, or comment are used as column names, you
must change them.

The SQL parser recognizes most reserved keywords from context, and usually
resolves keyword conflicts without error, so you may not have to change
reserved words used as names. If time permits, however, we recommend that
you avoid SQL reserved words.

For a complete list of reserved words, see the appendix “Keywords” and the SQL
Reference Guide.

Preparing Your Applications

2–4 Migration Guide

Report-Writer Syntax Change

From Ingres 6.4 To support new Report-Writer syntax, a space is required after all dot-
commands. For example, “.NL3” must be changed to “.NL 3”.

UNIX
To fix such occurrences automatically, you can use the following “sed”
commands:
sed -e 's/\([<space><tab>]\.[a-zA-Z][a-zA-Z]*\)\([0-9]\)/\1 \2/' foo.rw | \

sed -e 's/^\(\.[a-zA-Z][a-zA-Z]*\)\([0-9]\)/\1 \2/' >newfoo.rw

Compare the old and new files (foo.rw and newfoo.rw) to ensure that only the
expected changes occurred. For example, you want to avoid an unwanted “fix”
to a literal string.

An alternative to altering Report-Writer files is to sreport them into a database,
then copyrep the reports back out.

Report-Writer Runtime Parameter Errors

UNIX
If string parameters that contain quotes are passed to Report-Writer, runtime
errors may occur. These errors may be caused by a change to the UNIX
command parameter control file utexe.def.

If such an error occurs, it is possible to change the command parameter back to
the Ingres 6.4 utexe.def settings:

1. Edit $II_SYSTEM/ingres/files/utexe.def

2. Search for the string "(%S)"

3. Change the string to: param '(%S)'

Save the file, retest, and see whether the error still occurs.

This problem only occurs with application systems developed under Ingres 6.4.
However, you may need to check for the problem even if you are upgrading
from a more recent version. Generally, the utexe.def file is replaced with every
release of Ingres. Therefore, even if you have resolved this issue during a prior
upgrade, you will have to check for it again each time you upgrade.

Loading Databases and Applications into the New Installation

Getting Started 2–5

Loading Databases and Applications into the New
Installation

In this step, you move your development databases into the new Ingres
development environment.

Creating Users

After your Ingres development installation is running, create any necessary
Ingres users there. You may not need every user that exists in your current
development environment. At a minimum, you must create any DBA (database
owner) users.

Moving Databases

Note: Before performing this task, you should have already created procedures
for switching between the original version and new version development
environments, as described previously.

To move a database from the original development environment to your new
Ingres environment, use a simplified unload/reload procedure, as follows:

1. Setold and cd to a directory with enough space to hold the data; allow for
the Ingres System catalogs.

2. Create a directory for each database that is to be exported.

3. Cd to the directory for the database that is to be exported.

4. Execute unloaddb against the original-version database to be unloaded.

5. Execute unload.ing to export the front-end catalogs and data.

6. Edit the unload scripts as follows:

From Ingres 6.4 Edit the cp_ingre.in file and remove the lines:
\include /ing64/ingres/files/iiud.scr

\include /ing64/ingres/files/iiud64.scr

Directory paths may be different.

From Ingres 1.2 Edit the copy.in file and remove the lines:
\include /ing12/ingres/files/iiud.scr

\include /ing12/ingres/files/iiud65.scr

Directory paths may be different.

7. Fix the system_maintained column name if necessary. For more information,
see The system_maintained Column Name in this chapter.

Loading Databases and Applications into the New Installation

2–6 Migration Guide

8. Setnew to the Ingres installation.

9. Create the database there, without any front-end catalogs, as follows:
createdb databasename -f nofeclients

10. If the Ingres database name is not the same as the original database name,
then edit the reload.ing script.

11. Execute reload.ing for that database.

Tip: When using the reload.ing script, capture the output to a file in case any
errors occur. On UNIX you can do this using “tee,” as follows:
reload.ing |& tee /temp/reload.log

Be sure to review the output of the reload for any reserved word conflicts.
Correct any problems in the original-version environment and try again.

Moving Catalogs

At this point, the front-end catalogs in the Ingres database are in the original-
version format. To put them into new-version format, run:
upgradefe <databasename> INGRES

The above assumes that you want the catalogs and data to be copied from the
original development database to Ingres. If the data is not wanted, you can edit
the scripts so that unloaddb does not copy certain tables.

Moving Distributed Option Databases

For Ingres Distributed Option (formerly Ingres Star) databases, unloaddb the
CDB (the coordinator database, which usually starts with ii). This process
unloads any locally stored tables that do not exist in other local databases.

Then unloaddb on the DDB (the distributed database, usually accessed by
ddbname/star). This process unloads registrations and distributed view
definitions.

The system_maintained Column Name

Databases created in releases prior to Ingres II 2.5 that contain the Metaschema
module of system catalogs require an additional task when upgrading to Ingres
II 2.5 using unload/reload.

Loading Databases and Applications into the New Installation

Getting Started 2–7

These databases contain an extended system catalog ii_atttype with a column
named system_maintained. As of Ingres II 2.5, system_maintained is a reserved
word. Because of the keyword restriction, loading such a database into version
2.5 will fail. Release 2.6 and higher have a context sensitive keyword recognizer,
and does not have the problem.

In Ingres II 2.5, the name of the system_maintained column is changed to
sys_maintained. For the reload to work with 2.5, you must edit the original
copy.in script to use the new column name. While you can also make this change
using a utility such as sed, beware of inadvertently changing other uses of the
system_maintained keyword.

Databases created with OpenIngres 1.x, Ingres version 6.4, and older do not
usually contain the ii_atttype catalog. If you unload/reload a 6.4 database
containing ii_atttype, you have to manually edit the file cp_ingre.in and fix
system_maintained to sys_maintained.

Compiling Applications

After you have successfully imported your databases into the Ingres
development environment, you must compile your applications in that
environment. In most cases, you will want to make a copy of the application
source code and libraries. Make sure that any compile scripts, linker command
files, and the like point to the Ingres development installation, not the original
development installation.

Testing

When you can successfully compile your applications with Ingres, you are ready
to start testing. If you are upgrading from Ingres 6.4, there are additional
application issues that you should check for, discussed in Considerations for
Ingres 6.4 in the appendix “Upgrading from Ingres 6.4.”

Preparing Your System

2–8 Migration Guide

Preparing Your System
Some Ingres upgrade issues involve system or Ingres administration. Coordinate
these changes with the system administrator.

System Monitoring Shellscripts

Production systems may have tools to provide the system administrator with
early warning of Ingres problems. If these tools have been developed in-house,
they must be reviewed for compatibility with your new Ingres release.

Some items to check for are:

■ Are there still IO slaves on the UNIX platform? OS-thread architectures such
as Windows and Sun Solaris do not use IO slaves.

■ Does the tool parse iimonitor, logstat, or lockstat output? The detailed
wording and positioning of logstat and lockstat output can change from
release to release. Consider using IMA instead.

■ If you are upgrading from Ingres 6.4, the log files II_RCP.LOG and
II_ACP.LOG are renamed to iircp.log and iiacp.log.

■ If your tool parses Ingres 6.4 parameters, you will have to change it. Ingres
parameters are held in the files config.dat and protect.dat.

■ If you are using a commercial monitoring tool, contact the vendor to see if an
upgrade is needed to support Ingres.

If your Ingres monitoring tool uses the Ingres Monitoring Architecture (IMA), it
is likely to continue to function with new Ingres versions. IMA is the
recommended data source for any Ingres monitoring tool.

Checkpoint Template Changes

The Ingres checkpoint template file, cktmpl.def, may change from release to
release. If you have customized your checkpoint template file, you must review
and verify your changes with the new Ingres version.

Ingres 6.4 or
OpenIngres 1.2

If you are upgrading from Ingres 6.4, or from OpenIngres 1.2, you must redo
your template changes. The cktmpl.def file format has been expanded since
Ingres 6.4 and is therefore not compatible. The OpenIngres 1.2 template file
format is similar to the current one, but additional entries are required. Your old
checkpoint template can serve as a guide.

For more information on the new format of the checkpoint template file, see the
chapter “Backup and Recovery” in the Database Administrator Guide.

Preparing Your System

Getting Started 2–9

Tip: If your checkpoint template was customized to do multiple location
checkpoints in parallel, you may be able to remove this customization
entirely. Ingres supports parallel checkpoint and rollforwarddb processing
directly.

Ingres II If you are upgrading from a more recent Ingres II release, compare your revised
checkpoint template against the one installed with your new Ingres version. You
may be able to use your customized template as is, but first check for new or
changed entries in the new version.

The Ingres development installation can be used to develop and test the new
cktmpl.def.

Other Checkpoint and Rollforward Changes

Typically, checkpoints and journals are not compatible from one version to the
next. After an installation is upgraded, you must assume that all old checkpoints
and journal files are no longer usable with the new version of Ingres.

Rollforwarddb no longer supports a –b option. (In Ingres 6.4, the –b option gave
a starting time for applying journals.) Rollforwarddb no longer supports the
-noblobs option as it makes the table physically inconsistent and unusable.

Backup and Restore

When upgrading, it is important to have a system backup. If something goes
wrong, you will be able to restore from the backup.

Make sure that the system administrator knows how to take a complete system
backup and how to restore that backup. Do a trial backup and verify that the
backup is readable. This is especially important with tapes: failing tape drives
can appear to write tapes without error, but the tapes may not be readable.

The system administrator should ensure that proper backup procedures are
being followed. Backups taken as part of an upgrade should be removed from
any backup media recycling, and kept in a secure location for a long time.

Shared Library Search Path

On many UNIX platforms, Ingres uses shared libraries. Since there is no default
installation directory for Ingres, it is necessary to tell applications and tools
where Ingres is installed so that the shared libraries can be found.

Preparing Your System

2–10 Migration Guide

Use one of the following two ways:

■ For all users who access any Ingres programs or applications, set the
environment variables LIBPATH, LD_LIBRARY_PATH, or SHLIB_PATH, to
include the Ingres library directory, $II_SYSTEM/ingres/lib.

Failure to have LD_LIBRARY_PATH set will result in an error message:
ld.so.1: /ing20/20/ingres/bin/tm: fatal:
libframe.1.so: open failed: No such file or directory

You can arrange for this setting ahead of time, while you are still running
Ingres 6.4. The 6.4 binaries do not use LD_LIBRARY_PATH.

The exact name of the environment variable depends on your flavor of
UNIX. Most UNIX platforms use LD_LIBRARY_PATH; HP-UX uses
SHLIB_PATH; AIX versions 3 and 4 use LIBPATH. See the ld(1) or ld.so(1)
man page in your operating system documentation.

■ Link the Ingres library files to a standard UNIX library directory, such as
/usr/lib.

For example:
ln -s /ing20/ingres/lib/libframe.1.so /usr/lib

and repeat for each .so file in the Ingres lib subdirectory.

This does not require application wrappers or user environment changes.
The disadvantage of this approach is that you have to link (or copy) each
Ingres library individually, and after a subsequent upgrade, check the
validity of these links.

UNIX Kernel Parameters

Review the UNIX kernel parameter settings, particularly the maximum shared
memory size.

If upgrading from Ingres 6.4, you may have to increase the size of a shared
memory segment because Ingres builds a larger shared memory segment for
locking and logging than did Ingres 6.4.

A 100 MB shared memory segment will accommodate most migrated
installations. Each platform has its own way of modifying the shared memory
limits; discuss this with the system administrator or read the platform-specific
information in the Readme file.

If upgrading from a more recent version of Ingres, you probably do not have to
change the kernel parameters. It is prudent to configure your new Ingres
development installation similar to the production installation, to make sure that
no kernel changes are needed.

Testing

Getting Started 2–11

Testing

As changes are made to the application for Ingres compatibility, bring the
changes over to the development Ingres installation and test your applications
according to your test plan.

When testing, use data that is as close to live data as possible. Performance
critical functions should be tested against production data volumes.

Performance Testing

Include performance testing in your test plan. Changes to the query optimizer
can cause queries to perform differently from your original Ingres version.

Typically, queries are faster, but can be slower in some cases. This is likely when
a query has been tuned to work well with a peculiarity of the old-version query
optimizer. If you notice performance problems, use the set qep command or the
QEP display of Visual DBA. For more information on the use of query plans and
optimizer statistics, see the Database Administrator Guide.

System Administrator Procedures

You should also test your system administration procedures. Crash test the
Ingres installation when it is busy by pulling the power plug or issuing a system
command to crash the servers. Make sure that recovery occurs correctly. Do at
least one rollforwarddb of the most important databases and make sure it works
in your environment.

Practicing the Upgrade

Run a trial upgrade as early as possible in the conversion cycle. Ideally, you
should run trial upgrades more than once, so an isolated environment is
desirable.

Take notes on what went wrong or what should be done differently. Continue
practice upgrades until no more problems are encountered. Give the annotated
upgrade procedure to someone who can verify the upgrade plan.

At least one of the practice upgrades should be on a full live data set so that you
have an indication of how long the upgrade will take. This is particularly
important when doing an unload/reload upgrade. In contrast, upgradedb type
upgrades are largely insensitive to the amount of data in the database.

OpenROAD 4.0 Image File Formats

2–12 Migration Guide

Before the Live Upgrade

As the date for the live upgrade approaches, freeze all changes, delete all
application objects and images from the development Ingres installation, and re-
image everything. Use this refreshed copy for, at least, a critical functions test.

Use this build for the live upgrade.

OpenROAD 4.0 Image File Formats
The image file format (.img) for OpenROAD images changed from OpenROAD
3.5 to OpenROAD 4.0. Image files built using the two releases are not compatible.
Attempting to run an image from a different version will produce unpredictable
results. OpenROAD 3.5 applications should be re-imaged for use under
OpenROAD 4.0.

Upgrading Using Upgradedb 3–1

Chapter

3 Upgrading Using Upgradedb

This chapter describes how to use the upgradedb utility to upgrade from a
post-6.4 version of Ingres.

Upgrading using upgradedb transforms your database in-place from the original
version to the new, without requiring an unload and reload. Unlike upgrading
from 6.4, the internal database changes needed are relatively minor, so the
upgrade process leaves the databases largely untouched.

The upgradedb procedure assumes that you can become any user who owns
objects in any database (using login or UNIX “su”). If this is not feasible, you can
run as the installation owner, and use the -u{user} flag to pretend to be that user
any time you have to run an Ingres command.

Upgradedb Upgrade Procedure

Use the following procedure to perform an upgradedb upgrade from
OpenIngres, Ingres II, or Advantage Ingres 2.6.

Procedure Notation In this procedure, the notation [Each DB] means: “For each database, not
including the iidbdb, become the DBA for that database and perform this step.”

Do not include the iidbdb or Ingres Distributed Option distributed databases
unless instructed. If using the Distributed Option, remember to include the
coordinator database in the list of databases.

Step 1: Disable User Access

Disable user access.

During the upgrade, the production system is not available for use. Make sure
that users are not able to access the databases until the upgrade is complete.

Upgradedb Upgrade Procedure

3–2 Migration Guide

Step 2: Disable Remote Command Server

The Remote Command Server component of Visual DBA must be disabled for
the duration of the upgrade. The Remote Command Server uses the iidbdb
database as a communications mechanism in versions of Ingres prior to 2.6, so it
will interfere with upgrading.

To disable the Remote Command Server, run Configuration-By-Forms. Locate
the row for the Remote Command Server, and note the startup count. Record this
value for later, and then use the EditCount function to set the startup count to
zero.

Note: If you are upgrading from early versions of OpenIngres 1.x, you may not
see an entry for Remote Command Server. Skip this step.

Step 3: Shut Down Ingres and Back Up System

Perform a clean shutdown of Ingres, clearing all transactions from the
transaction log. To achieve this, shut down Ingres, restart Ingres, and then shut it
down again. Check the recovery process log (iircp.log) for the message “RCP
Shutdown completed normally.”

Take a system backup using a command appropriate to the platform. Make sure
you include all Ingres directories: data, checkpoint, journal, dump areas, and the
$II_SYSTEM/ingres directory containing Ingres files and executables. Back up
the application directories.

Watch for symbolic links and cross-mounts; make sure real data is saved and not
a symbolic link.

If Ingres is typically started up at boot time, include the root file system in the
backup. Alternatively, print a copy of any Ingres boot time startup and
shutdown scripts.

For maximum safety, perform this step twice. At minimum, after the backup
completes, check the backup media to ensure that the backup can be read. If your
backup medium is tape, use new tapes, and clean the tape drive before the
backup.

After completing the backup, restart Ingres.

Upgradedb Upgrade Procedure

Upgrading Using Upgradedb 3–3

Step 4: [Each DB Including iidbdb] Clean the Database

Perform the following steps to ensure integrity of the system catalogs:
sysmod dbname

verifydb –mreport –sdbname dbname –odbms_catalog

The verifydb command may issue messages:
S_DU1611_NO_PROTECTS iirelation indicates that there are protections for table
(owner), but none are defined.

S_DU0305_CLEAR_PRTUPS Recommended action is to clear protection information from
iirelation, and S_DU1619_NO_VIEW iirelation indicates that there is a view
defined for table (owner), but none exists.

S_DU030C_CLEAR_VBASE Recommended action is to clear view base specification from
iirelation.

You can ignore these messages. Also, ignore the “patch warning” message that
warns of the loss of user tables in “runinteractive” mode. This mode will not be
used.

If verifydb issues other warnings or errors, there may be damage to the system
catalog. Before upgrading that database, review the messages with Computer
Associates Technical Support.

Step 5: [Each DB] Record Database Information

Run infodb against each database, saving the output. The output will be needed
later. You will need to know, for example, whether the database was journaled,
where the database resides, and in what order the data locations were
configured.
infodb dbname >infodb.out

Step 6: [Each DB Including iidbdb] Checkpoint and Turn Off Journaling

Checkpoint each database, using the ckpdb command with –j option to turn off
journaling.

If upgradedb fails, you can use this checkpoint to recover and try again.

Save the configuration file stored in the dump area after each checkpoint. The
configuration file is small.

To do this, issue these commands:
ckpdb -d -j dbname

cp $II_DUMP/ingres/dmp/default/dbname/aaaaaaaa.cnf {somewhere secure}

Upgradedb Upgrade Procedure

3–4 Migration Guide

Step 7: Shut Down Ingres

Shut down Ingres with the ingstop command.

Step 8: Preserve Site Modifications

If you have customized any files that are distributed as part of Ingres, you must
copy them because they will be lost during the upgrade. Any custom files you
have added to the $II_SYSTEM directory tree will remain.

Commonly, customizations are made to the termcap and keyboard map files in
$II_SYSTEM/ingres/files. Customizations are also made to local collation
sequence files. Save the original collation definition files and the compiled files in
$II_SYSTEM/ingres/files/collation.

Copy customized files to a safe place. Do not copy them to /tmp or anywhere in
$II_SYSTEM/ingres directory.

If you cannot identify all your customized files, you can do the following to
ensure that you preserve the necessary files:

1. Delete all *.log files from $II_SYSTEM/ingres/files

2. Copy to a safe place the entire contents of the following directories:

■ all .opt files

■ $II_SYSTEM/ingres/bin

■ $II_SYSTEM/ingres/files

■ $II_SYSTEM/ingres/rep

■ $II_SYSTEM_ingres/files/rep

■ $II_SYSTEM/ingres/files/dayfile

■ $II_ingres/files/startup

■ $II_SYSEM/ingres/files/startsql

■ $II_SYSTEM/ingres/utility

This procedure copies more files than necessary, but you can delete the copy
after Ingres has been running live for a period.

Do not delete the copy immediately when the upgrade completes, because you
may discover weeks later that you need the old version of a file (for example, a
Vision template or keyboard map) from the original $II_SYSTEM/ingres
directory.

Upgradedb Upgrade Procedure

Upgrading Using Upgradedb 3–5

UNIX
On UNIX, to copy these files, use commands similar to the following:

cd $II_SYSTEM/ingres

tar cf - bin files rep utility | (cd /someplace/safe;tar xf -)

Visual DBA Configurations

When upgrading, Visual DBA configuration files (.vdbacfg) are not upwardly
compatible and must be recreated.

Note that instead of using configuration files, you can use the vdba command
with command line flags to start Visual DBA with, for example, certain windows
open on given nodes. For details on the vdba command, see the Command
Reference Guide.

Step 9: Delete Install Directory

Note: This step is only necessary on UNIX. It is optional but recommended.

UNIX
The Ingres installation procedure on UNIX starts by extracting the install
subdirectory from the Ingres distribution.

You should delete the old contents of that directory first, as follows:
cd $II_SYSTEM/ingres

rm –rf install

Step 10: Install Ingres

To install Ingres, see the Ingres installation instructions for your platform.

During the installation process, the DBMS Server setup asks whether all
databases are to be upgraded; answer No. The installation procedure
automatically upgrades the iidbdb. If the upgrade of iidbdb fails, see the
appendix “Troubleshooting Upgradedb Problems.” It is better to complete the
Ingres setup, and then use the upgradedb command to upgrade the user
databases.

After the iidbdb is upgraded, the DBMS Server setup attempts to upgrade imadb
and install Remote Command Server objects into imadb. Some versions of
upgradedb neglect to create imadb first, and you will get “Database does not
exist: imadb” errors. These will be corrected in the next step.

Upgradedb Upgrade Procedure

3–6 Migration Guide

Upgrading to Older Versions That Require a Patch

Newer versions of Ingres distribute service packs. You can install service packs
without having to install a base release of Ingres first.

UNIX
If you are upgrading to an older Ingres version that requires an overlay patch
instead of a service pack, follow this procedure:

1. Run ingbuild. When asked whether you want to set up all the Ingres
components, respond No. Exit ingbuild.

2. Install the Ingres patch.

3. Run ingbuild again. Select Current, then SetupAll.

4. Follow the prompts to complete the Ingres setup.

Setup now uses the fixed version.

Step 11: Create imadb Database

Note: Perform this step only if you received “Database does not exist: imadb”
messages during the DBMS setup phase of your Ingres install. This should only
occur if you are upgrading from OpenIngres version 1.x.

As the installation owner, execute these commands:

UNIX

ingstart
cd $II_SYSTEM/ingres/vdba
createdb '-u$ingres' imadb –f nofeclients
sql '-u$ingres' imadb <makimau.sql
rmcmdgen
ingstop

Windows

ingstart
cd %II_SYSTEM%\ingres\vdba
createdb -u$ingres imadb –f nofeclients
sql -u$ingres imadb <makiman.sql
rmcmdgen
ingstop

As the makimau or makiman SQL scripts run, you see a series of messages such
as “E_US0AC1 'some-name' does not exist or is not owned by you.” These are
normal and can be ignored.

Upgradedb Upgrade Procedure

Upgrading Using Upgradedb 3–7

Step 12: Restore Site Modifications

Refer to the save directory that was created in Step 8 (see Step 8: Preserve Site
Modifications in this chapter), and review any site-specific files that were
overwritten by the upgrade.

Checkpoint Template If the checkpoint template file cktmpl.def has been modified, the modifications
may need to be carried forward into Ingres. Your original cktmpl.def should not
be used directly, as entries can be added or revised in new versions of Ingres.
Compare your customized cktmpl.def with the newly installed file, and make
necessary changes in the new cktmpl.def. For information about the checkpoint
template, see the Database Administrator Guide.

Step 13: Start Ingres

Run ingstart to start Ingres.

Step 14: Run Upgradedb Utility

Run the upgradedb utility to upgrade databases.

You can upgrade databases one at a time or all at the same time. Log the
upgradedb output to a file.

To upgrade one at a time:
upgradedb dbname

To upgrade all at the same time:
upgradedb –all

Example of logging upgradedb output to a file:
upgradedb -all |& tee upgradedb.log

Troubleshooting If errors occur, see the appendix “Troubleshooting Upgradedb Problems.”
Correct the errors and rerun the upgradedb utility.

If the upgradedb command starts and then hangs with no error indication, the
Remote Command Server may be interfering with the process. This is
particularly likely if you are upgrading to Ingres II version 2.0 instead of Ingres.
To fix, stop the Remote Command Server, as follows:
rmcmdstp

You can use Configuration-By-Forms or Visual Configurator to turn off the
Remote Command Server until the upgrade is finished: select Remote Command
Server and use EditCount to set the startup count to zero.

Upgradedb Upgrade Procedure

3–8 Migration Guide

Step 15: Review Ingres Configuration

The upgrade preserves your original Ingres installation parameters. You should
review the configuration because some parameters may change from version to
version. For information on parameters that changed, check the Readme for your
new version of Ingres.

Review your parameter settings by running Configuration-By-Forms or Visual
Configurator. Especially pay attention to major items such as startup counts and
DBMS cache settings.

Note: If you disabled the Remote Command Server in Step 2 (see Step 2: Disable
Remote Command Server in this chapter), use EditCount to restore its startup
count to the original value.

Step 16: [Each DB] Reapply Optimizer Statistics (Optional)

Note: This step is required only if upgrading from OpenIngres 1.x. The step is
optional. Ingres computes additional metrics that OpenIngres 1.x did not have.

To take advantage of the new metrics, regenerate the optimizer statistics using
the procedures of your application system.

Step 17: [Each DB including iidbdb] Checkpoint the Database

Checkpoints and journals from your original Ingres version will not work with
Ingres, so do not omit or delay this step.

Checkpoint each database. If the database was journaled previously, use the +j
flag to turn on journaling.

To know which databases were journaled, see the infodb output from Step 5 (see
Step 5: [Each DB] Record Database Information in this chapter).

The iidbdb should always be journaled, regardless of whether it was journaled in
the original installation.

Step 18: Install Upgraded Applications

Install the Ingres versions of the applications. Then restore user logins and
resume normal operation.

Upgrading Using Unload/Reload 4–1

Chapter

4 Upgrading Using Unload/Reload

This chapter describes how to use the unload/reload procedure to upgrade from
a post-6.4 version of Ingres.

The unload/reload upgrade avoids the upgradedb program (except for iidbdb),
in favor of unloading the original Ingres databases to flat files, recreating the
databases under Ingres, and then reloading the databases. This approach has the
advantage of starting with clean databases, but requires more time and disk
space than does the upgradedb method.

Note: Databases using the system-maintained logical key feature are best
upgraded using upgradedb. Tables that contain SYSTEM_MAINTAINED
table_key or object_key columns cannot be safely unloaded and reloaded
without additional work. The reload step generates all new logical key values. If
other tables reference the logical key columns, the new values must be manually
propagated to those tables.

Two Variations
The unload/reload procedure has two variations:

■ The in-place upgrade, which replaces the original installation with the new
Ingres installation. The master database (iidbdb) is upgraded with
upgradedb, even though other databases are unloaded and reloaded.
Because the iidbdb remains, all your locations, users, groups, and roles still
exist in the new installation.

■ The clean install upgrade, which leaves the original installation alone. Ingres
is installed into a completely new installation. (The new installation may
even be on a different machine.) When performing a clean install upgrade,
you must take extra steps to recreate locations and move users, groups, and
roles from the original installation to the new one.

Unload/Reload Upgrade Procedure

4–2 Migration Guide

Unload/Reload Upgrade Procedure
Use the following procedure to perform an unload/reload upgrade from
OpenIngres, Ingres II, or Advantage Ingres 2.6.

Procedure Notation In this procedure, the notation [Each DB] means: “For each database, not
including the iidbdb, become the DBA for that database, cd to the unload
directory for the database created in Step 1, and perform this step.”

If using the Distributed Option, include the coordinator database in the list of
databases.

Steps that apply to a particular upgrade type only (that is, in-place upgrade or
clean install upgrade) are marked accordingly.

Step 1: [Each DB Including iidbdb] Create Unload Directories

Create a directory for each database. The directory is used to hold scripts and
data from the unloaded database and requires a large amount of disk space. As
an estimate, the unloaded data is about the same size as the Ingres database;
however, compressed data can expand to take up much more space than the
Ingres database.

UNIX On UNIX, use these commands:
mkdir /someplace/dbname

chmod 777 /someplace/dbname

Windows On Windows, use this command:
mkdir d:\someplace\dbname

Step 2: [Each DB] Run Unloaddb

Run unloaddb against each database. The unloaddb command does not unload
the database; it simply creates copy in and copy out scripts.

Note: For Distributed Option databases, unload the CDB in the same way as for
a local database. For a DDB, use unloaddb/star.

For a regular DB or CDB:
unloaddb dbname

Unload/Reload Upgrade Procedure

Upgrading Using Unload/Reload 4–3

For a Distributed Option DDB:
unloaddb ddbname/star

If doing a clean-install upgrade to a different machine that has a newer
architecture, binary data may not be compatible between the two machines. If
this is the case, use the unloaddb –c option, which causes an ASCII instead of
binary unload.

Step 3: [Each DB] Check for Obsolete Users

Old databases may have objects created by users who no longer exist.

Examine the copy.out and copy.in scripts created by unloaddb in Step 2. Each
script contains set session authorization SQL statements for each user who owns
a database object. Search for the set session authorization statements, and make
sure that all users listed are valid.

If obsolete users are found, delete all the lines from that set session
authorization statement up to the next one. Also, go into the database and clean
out these unwanted objects.

Step 4: [Each DB Including iidbdb] Checkpoint the Database (Optional)

Note: This step is optional. You can omit this step if you can rely on the system
backup to be taken in Step 7 (see Step 7: Shut Down Ingres and Back Up System
in this chapter).

Checkpoint each database and then copy the checkpoint files to a permanent
medium such as tape. If using tape, use fresh tape and verify that the tape can be
read.

Remember to checkpoint the iidbdb.

Step 5: Disable User Access

Disable user access.

Unload/Reload Upgrade Procedure

4–4 Migration Guide

Step 6: Disable Remote Command Server

The Remote Command Server component of Visual DBA must be disabled for
the duration of the upgrade. The Remote Command Server uses the iidbdb
database as a communications mechanism in versions of Ingres prior to 2.6, so it
will interfere with upgrading.

To disable the Remote Command Server, run Configuration-By-Forms. Locate
the row for the Remote Command Server, and note the startup count. Record this
value for later, and then use the EditCount function to set the startup count to
zero.

Note: If you are upgrading from early versions of OpenIngres 1.x, you may not
see an entry for Remote Command Server. Skip this step.

Step 7: Shut Down Ingres and Back Up System

Note: This step is required only for an in-place upgrade. However, this is a
convenient time to get a complete backup of your production system before the
upgrade. Therefore, you may want to perform this step even if doing a clean
install upgrade.

Perform a clean shutdown of Ingres, clearing all transactions from the
transaction log. To achieve this, shut down Ingres, restart Ingres, and then shut it
down again. Check the recovery process log (II_RCP.LOG) for the message “RCP
Shutdown completed normally.”

Take a system backup using a command appropriate to the platform. Make sure
you include all Ingres directories: data, checkpoint, journal, dump areas, and the
$II_SYSTEM/ingres directory containing Ingres files and executables. Back up
the application directories.

Watch for symbolic links and cross-mounts; make sure real data is saved and not
a symbolic link.

If Ingres is typically started up at boot time, include the root file system in the
backup. Alternatively, print a copy of any Ingres boot time startup and
shutdown scripts.

For maximum safety, perform this step twice. At minimum, after the backup
completes, check the backup media to ensure that the backup can be read. If your
backup medium is tape, use new tapes, and clean the tape drive before the
backup.

After completing the backup, restart Ingres.

Unload/Reload Upgrade Procedure

Upgrading Using Unload/Reload 4–5

Step 8: [Each DB] Unload the Database

For each database, run the unload.ing script created by unloaddb. This unloads
the database into your unload directory.

Step 9: [Each DB] Print Optimizer Statistics (Optional)

Note: This step applies only to a clean-install upgrade.

If your upgrade plan allows enough downtime to run a full optimizedb against
your databases, you can omit this step. If your plan does not allow enough
downtime, perform this step as a shortcut.

Note: Be aware that using this shortcut may result in some of the new Ingres
metrics not being available; query performance may suffer until a full
optimizedb can be completed.

If you are upgrading from OpenIngres 1.x, you should regenerate new statistics
instead of saving the old ones, if possible.

To dump the existing optimizer statistics, run statdump with the -o flag to a file
for each database, as follows:
statdump -o dbname.stats dbname

Step 10: [Each DB] Record Database Information

Run infodb against each database, saving the output. The output will be needed
later. You will need to know, for example, whether the database was journaled,
the data locations where the database resides, and in what order the locations
were configured.

Run infodb as follows:
infodb dbname >infodb.out

Also, record whether the database is public or private. To find out, use the
catalogdb command. Select Databases, and then enter the database name. The
screen that appears has an Access field that indicates whether the database is
public or private.

Unload/Reload Upgrade Procedure

4–6 Migration Guide

Step 11: Record Database Privileges

As the installation owner, change directories to the unload directory for iidbdb
created in Step 1. Save user database privileges, as follows:
sql iidbdb
\script dbprivs.out
select *
from iidbprivileges
where database_name <> ''
order by database_name,grantee_name
\go
\script
\quit

This procedure creates the file dbprivs.out for future reference.

Step 12: Save Users, Groups, and Roles

Note: This step is required only for a clean-install upgrade.

As the installation owner, change directory to the iidbdb unload directory, as
you did in the previous step. Run the following SQL to save users, groups, and
roles:
sql iidbdb
copy iiusergroup (
 groupid=c0comma,groupmem=c0nl
) into 'groups.out'
\go

 copy iirole(
 roleid=c0nl
) into 'roles.out'
\go

create table role_tmp as
select role_name,grantee_name
from iirolegrant
where admin_option <> 'Y'
\go
copy role_tmp(
 role_name = c0comma,
 grantee_name = c0nl
) into 'rolegrants.out';
drop role_tmp;
\go
 \quit

Next, run accessdb. Select Users, then SqlScript. This writes a file called users.sql
that will recreate all users, as they are currently defined.

Unload/Reload Upgrade Procedure

Upgrading Using Unload/Reload 4–7

Step 13: [Each DB] Destroy the Database

Note: This step is required only for an in-place upgrade.

Destroy each database using the destroydb command.

Step 14: Clean iidbdb Database

Note: This step is required only for an in-place upgrade.

Become the installation owner and run the following steps against the master
database iidbdb. It is assumed that there are no objects created by users in the
iidbdb.
sysmod iidbdb

verifydb -mrun -sdbname iidbdb -opurge

verifydb -mrun -sdbname iidbdb –odbms

ckpdb –j iidbdb

The verifydb -odbms command may issue the following messages:
S_DU1611_NO_PROTECTS iirelation indicates that there are protections for table
(owner), but none are defined.

S_DU0305_CLEAR_PRTUPS Recommended action is to clear protection information from
iirelation, and S_DU1619_NO_VIEW iirelation indicates that there is a view
defined for table (owner), but none exists.

S_DU030C_CLEAR_VBASE Recommended action is to clear view base specification from
iirelation.

You can ignore these messages. Also, ignore the “patch warning” message that
warns of the loss of user tables in “runinteractive” mode. This mode will not be
used.

Step 15: Shut Down Ingres

Shut down Ingres with the ingstop command.

Step 16: Disable Ingres Startup

Note: This step is recommended even if you are doing a clean installation
upgrade. By leaving the old 6.4 installation shut down, you eliminate the chance
that someone will connect to it by mistake later.

If Ingres starts automatically when the machine boots up, turn auto-starting off
until the upgrade is complete.

Unload/Reload Upgrade Procedure

4–8 Migration Guide

On most UNIX platforms, a file in a system startup directory performs Ingres
startup and shutdown; place an “exit 0” at the top of this file. The system
administrator may need to perform this step if it requires root privilege. (The
system startup directory depends on your platform—/etc/init.d, or /sbin/init.d,
or a similar name).

On Windows, if Ingres is run as a system service, set the service to start manually
instead of automatically.

Make sure that the operating system is correctly configured for your new version
of Ingres (see Preparing Your System in the chapter “Getting Started”).

Reboot, if necessary, to put the operating system parameter changes into effect.

Step 17: Preserve Site Modifications

If you have customized any files that are distributed as part of Ingres, you must
copy them because they will be lost during the upgrade. Any custom files you
have added to the $II_SYSTEM directory tree will remain.

Commonly, customizations are made to the termcap and keyboard map files in
$II_SYSTEM/ingres/files. Customizations are also made to local collation
sequence files. Save the original collation definition files and the compiled files in
$II_SYSTEM/ingres/files/collation.

Copy customized files to a safe place. Do not copy them to /tmp or anywhere in
$II_SYSTEM/ingres directory.

If you cannot identify all your customized files, you can do the following to
ensure that you preserve the necessary files:

1. Delete all *.log files from $II_SYSTEM/ingres/files

2. Copy to a safe place the entire contents of the following directories:

■ all .opt files

■ $II_SYSTEM/ingres/bin

■ $II_SYSTEM/ingres/files

■ $II_SYSTEM/ingres/rep

■ $II_SYSTEM_ingres/files/rep

■ $II_SYSTEM/ingres/files/dayfile

■ $II_ingres/files/startup

■ $II_SYSEM/ingres/files/startsql

■ $II_SYSTEM/ingres/utility

Unload/Reload Upgrade Procedure

Upgrading Using Unload/Reload 4–9

This procedure copies more files than necessary, but you can delete the copy
after Ingres has been running live for a period.

Do not delete the copy immediately when the upgrade completes, because you
may discover weeks later that you need the old version of a file (for example, a
Vision template or keyboard map) from the original $II_SYSTEM/ingres
directory.

UNIX
On UNIX, to copy these files, use commands similar to the following:

cd $II_SYSTEM/ingres

tar cf - bin files rep utility | (cd /someplace/safe;tar xf -)

Visual DBA Configurations

When upgrading, Visual DBA configuration files (.vdbacfg) are not upwardly
compatible and must be recreated.

Note that instead of using configuration files, you can use the vdba command
with command line flags to start Visual DBA, for example, with certain windows
open on given nodes. For details on the vdba command, see the Command
Reference Guide.

Step 18: Delete Install Directory

Note: This step is required only for an in-place upgrade on UNIX. It is optional
but recommended.

UNIX
The Ingres installation procedure on UNIX starts by extracting the install
subdirectory from the Ingres distribution.

You must delete the old contents of that directory first, as follows:
cd $II_SYSTEM/ingres

rm –rf install

Step 19: Install Ingres

To install Ingres, see the Ingres installation instructions for your platform.

In-place upgrades only: During the installation process, the DBMS Server setup
asks whether all databases are to be upgraded; answer No. The install procedure
automatically upgrades the iidbdb. If the upgrade of iidbdb fails, see the
appendix “Troubleshooting Upgradedb Problems. “

Unload/Reload Upgrade Procedure

4–10 Migration Guide

After the iidbdb is upgraded, the DBMS Server setup attempts to upgrade imadb
and install Remote Command Server objects into imadb. Some versions of
upgradedb neglect to create imadb first, and you will get “Database does not
exist: imadb” errors. These will be corrected in the next step.

Upgrading to Older Versions That Require a Patch

Newer versions of Ingres distribute service packs. You can install service packs
without having to install a base release of Ingres first.

UNIX
If you are upgrading to an older Ingres version that requires an overlay patch
instead of a service pack, follow this procedure:

1. Run ingbuild. When asked whether you want to set up all the Ingres
components, respond No. Exit ingbuild.

2. Install the Ingres patch.

3. Run ingbuild again. Select Current, then SetupAll.

4. Follow the prompts to complete the Ingres setup.

Setup now uses the fixed version.

Step 20: Create imadb Database

Note: Perform this step only if you received “Database does not exist: imadb”
messages during the DBMS Setup phase of your Ingres install.

Create the imadb database.

As the installation owner, execute these commands:

UNIX

ingstart
cd $II_SYSTEM/ingres/vdba
createdb '-u$ingres' imadb –f nofeclients
sql '-u$ingres' imadb <makimau.sql
rmcmdgen
ingstop

Windows

ingstart
cd %II_SYSTEM%\ingres\vdba
createdb -u$ingres imadb –f nofeclients
sql -u$ingres imadb <makiman.sql
rmcmdgen
ingstop

Unload/Reload Upgrade Procedure

Upgrading Using Unload/Reload 4–11

As the makimau or makiman SQL scripts run, you see a series of messages such
as “E_US0AC1 'some-name' does not exist or is not owned by you.” These are
normal and can be ignored.

Step 21: Restore Site Modifications

Refer to the save directory that was created in Step 17 (see Step 17: Preserve Site
Modifications in this chapter), and restore any site-specific files.

Checkpoint Template If the checkpoint template file cktmpl.def has been modified, the modifications
may need to be carried forward into Ingres. Your original cktmpl.def should not
be used directly, as entries can be added or revised in new versions of Ingres.
Compare your customized cktmpl.def with the newly installed file, and make
necessary changes in the new cktmpl.def. For information about the checkpoint
template, see the Database Administrator Guide.

Step 22: Review Ingres Configuration

If you are doing a clean install, you need to change the default Ingres
configuration to match your site requirements.

If you are doing an in-place upgrade, the upgrade process preserves your
original Ingres installation parameters. You should review the configuration
because some parameters may change from version to version. For information
on parameters that changed, check the Readme for your new version of Ingres.

Review your parameter settings by running Configuration-By-Forms or Visual
Configurator. Especially pay attention to major items such as startup counts and
DBMS cache settings. If you are doing a clean install, you can use your original
Ingres installation configuration as a guide.

Note: If you disabled the Remote Command Server in Step 6 (see Step 6: Disable
Remote Command Server in this chapter), use EditCount to restore its startup
count to the original value.

Step 23: Set Up Ingres Net

Run netutil to create the vnode definitions for the remote installations. If
installation passwords are needed, you must run mkvalidpw. See the System
Administrator Guide or the Readme for your platform.

If there are NFS client-only installations that have not been set up, run ingmknfs
to set them up.

Unload/Reload Upgrade Procedure

4–12 Migration Guide

Step 24: Start Ingres

Run ingstart to start Ingres.

Step 25: Recreate Users, Groups, and Roles

Note: This step is required only for a clean-installation upgrade.

As the installation owner, change directory to your iidbdb unloaddb directory
where you stored the files from Step 12 (see Step 12: Save Users, Groups, and
Roles in this chapter).

Run this SQL:
sql '-u$ingres' iidbdb
copy iiusergroup(groupid=c0comma,groupmem=c0nl)
from 'groups.out'
\go
commit
\go
\read users.sql
commit
\go
\quit

Windows
For Windows, omit the quotes from the sql command line.

The file users.sql may try to recreate some users that already exist in the
installation, such as the installation owner and root user. This will cause
“E_US18B6 The user 'name' already exists” errors. You can ignore these errors.

If your original installation had roles defined, recreate them with the ADD ROLE
SQL statement. Use the file roles.out as a guide. Roles cannot be reliably bulk-
loaded from the original installation, so you must recreate them by hand. After
you recreate each role, issue the following SQL statement:
grant rolename to user; commit

The most common user here is public. You can use the file rolegrants.out to
determine what role grants are needed.

Step 26: Recreate Locations

Note: This step is required only for a clean-install upgrade.

Refer to each infodb output saved in Step 10 (see Step 10: [Each DB] Record
Database Information in this chapter). Create any location that is not a default
installation location (ii_database, ii_checkpoint, ii_journal, or ii_dump).

Unload/Reload Upgrade Procedure

Upgrading Using Unload/Reload 4–13

For more information about creating locations, see the Database Administrator
Guide.

Step 27: [Each DB] Recreate the Database

Before creating each database, refer to the infodb output saved in Step 10 (see
Step 10: [Each DB] Record Database Information in this chapter). Look at the
location names for ROOT, JOURNAL, CHECKPOINT, and DUMP. If these are
not ii_database, ii_journal, ii_checkpoint, or ii_dump, you must specify the
location to createdb with the –d, -j, -c, or –b flags, respectively.

Also, refer to the database access information recorded in that step. If the
database access was “private,” you must use the –p flag for createdb.

If all the database locations are the default, and the database is public, you can
omit the flags on the createdb command line.

Recreate each user database, omitting the front-end catalogs. (The front-end
catalogs will be created as part of the reload.) Use the following command:
createdb dbname flags -f nofeclients

Note: For a Distributed Option database, run createdb/star for the DDB. Do not
run createdb for the CDB.

Step 28: [Each DB] Extend the Database

Refer to the infodb output saved in Step 10 (see Step 10: [Each DB] Record
Database Information in this chapter). If the database was extended to data
locations other than the default location, run accessdb as the installation owner
and extend the newly-created databases to the same locations. The locations will
already exist; it is only necessary to extend the databases to use them.

If you prefer a non-interactive command line utility, you can use the extenddb
utility instead of accessdb.

Step 29: Recreate Database Privileges

As the installation owner, change to the iidbdb unloaddb directory, and refer to
the file dbprivs.out created in Step 11 (see Step 11: Record Database Privileges in
this chapter).

Each row describes one or more database privileges given to the user grantee-
name. A Y or N in a privilege column indicates the specific privilege. (A U in a
column means “Unchanged.”)

Unload/Reload Upgrade Procedure

4–14 Migration Guide

Start an iidbdb Terminal Monitor session:
sql iidbdb

For each row, issue the statement:
grant privilege on database database-name to grantee-name;commit

If the privilege column is N, grant noprivilege instead of privilege.

When finished, use \quit to exit the iidbdb session.

The structure of the iidbpriv catalog did not change between OpenIngres 1.x and
Advantage Ingres 2.6, so it is possible to copy the original contents of the catalog
directly. However, we do not recommend this because the catalog may change in
future releases.

If you have defined many privileges, or recreated many users, groups, or roles,
you should run sysmod on the iidbdb, which will accelerate query processing.
Issue the sysmod command, as follows:
sysmod iidbdb

Step 30: [Each DB] Fix FE Reload Script

Edit the file copy.in and locate the lines:
\include/ing12/ingres/files/iiud.scr
\include/ing12/ingres/files/iiud65.scr

Note: The directory path may differ.

Delete these lines. Because the new database was not created with front-end
catalogs, it is not necessary to drop them.

Also, check for the ii_atttype catalog definition:
create table ii_atttype (
.
.
...about 23 lines...
.
.
 system_maintained char(1) not null

Change the name system_maintained to sys_maintained.

Not all databases contain the ii_atttype catalog, so it is okay if you do not find the
definition.

Save the modified copy.in file.

Unload/Reload Upgrade Procedure

Upgrading Using Unload/Reload 4–15

Step 31: [Each DB] Reload the Database

Run reload.ing for each database.

UNIX
Redirect the reload to a log file so that it can be checked for errors. Using the C
shell:
reload.ing |& tee reload.log

Note: If using the Distributed Option, reload the CDB and all “real” local
databases before reloading the DDBs.

After the reload is complete, verify that the table ii_id has only one row. Type
isql <database>, and select * from ii_id. If more than one row is returned, delete
the row with the lowest object_id.

Step 32: [Each DB] Upgrade Front-End Catalogs

Run upgradefe on each database, which brings the front-end catalogs up to
Ingres level. Issue the following command:
upgradefe dbname INGRES

The word INGRES should appear in uppercase.

Step 33: [Each DB] Reapply Optimizer Statistics

Regenerate optimization statistics. You can do this either by regenerating
statistics from scratch or by using the original statistics printed from the original
installation earlier in this upgrade procedure (see Step 9: [Each DB] Print
Optimizer Statistics (Optional).

If there is sufficient time, we recommend that you regenerate the optimizer
statistics using the procedures of your application system.

If time is short, and if you printed the original statistics in Step 8, you can read
them back in with the –i option to optimizedb:
optimizedb dbname -i dbname.stats

Step 34: [Each DB including iidbdb] Checkpoint the Database

Checkpoints and journals from your original Ingres version will not work with
Ingres, so do not omit or delay this step.

Checkpoint each database. If the database was journaled previously, use the +j
flag to turn on journaling.

Unload/Reload Upgrade Procedure

4–16 Migration Guide

To know which databases were journaled, see the infodb output from Step 10
(see Step 10: [Each DB] Record Database Information in this chapter).

The iidbdb should always be journaled, regardless of whether it was journaled in
the original installation.

Step 35: Install Upgraded Applications

Install the latest Ingres versions of the applications. Then, restore user logins and
resume normal operation.

Considerations for Alpha OpenVMS A–1

Appendix

A
Considerations for Alpha
OpenVMS

This appendix describes the steps required for upgrading Ingres on the Alpha
OpenVMS platform from Ingres II 2.0 to Advantage Ingres 2.6/0401 or Ingres r3
(axm.vms/00).

Use this chapter in conjunction with the appropriate edition of the Ingres Getting
Started guide and the Readme file.

OpenVMS Requirements
For the minimum process requirements for an Ingres system administrator, see
the appendix “System Requirements for OpenVMS” in the Getting Started guide.

Installing Ingres
The installation process has not changed significantly from Ingres II 2.0. For full
instructions on installing Ingres on OpenVMS, see the Getting Started guide.

Ingres uses the VMSINSTAL procedure to install and configure its software.
Using VMS, it is possible to create the new Ingres System Administrator account,
extract all the software required, and configure Ingres. However, depending on
how the installation progresses, some issues may develop.

Mounting the CD

You can install Ingres either directly from the CD-ROM or from a working area
on the target system. If the files are transferred to the target node through FTP,
they must be moved across in binary mode. However, if the machine has a
CD-ROM drive, you can use the following command to mount the CD:
$ MOUNT /OVERRIDE=IDENTIFICATION /MEDIA_FORMAT=CDROM -
 /UNDEFINED_FAT=(FIXED:CR:32256) <CD Device>

Installing Ingres

A–2 Migration Guide

To access the release notes use the following:
$ MOUNT /OVERRIDE=IDENTIFICATION /MEDIA_FORMAT=CDROM <CD Device>

Running VMSINSTAL

Ingres can be installed from any privileged account, defined as holding the
privileges needed to run Ingres. (For the required Ingres privileges, see the
Getting Started guide.)

To run the installer issue the command:
@sys$update:vmsinstal * distribution_medium

By default, the SYS$ROOT area is used by VMSINSTAL to unpack the savesets
in preparation for installing Ingres. If there is insufficient space available then
VMSINSTAL will fail. To specify an alternate working directory, you can use the
awd parameter, as follows:
@sys$update:vmsinstal * <distribution_medium> options awd=device:[dir]

To log the installation process specify the option L when calling VMSINSTAL:
@sys$update:vmsinstal * <distribution_medium> options L

Known Installation Issues

Note: For more information about these issues, contact technical support or
check the technical documents available at the Computer Associates Technical
Support web site, accessible from http://ca.com.

Creating the Ingres System Administrator account from within VMSINSTAL
does not assign the correct process quotas to the account. (For the correct quotas,
see the Getting Started guide.) The workaround is to create the account before the
VMSINSTAL process is started with the correct privileges and process quotas.

II_WORK is not picked up, if pre-defined in the local symbol table, when an
Express installation is performed. The user must enter the correct information
when prompted.

If Ingres is installed from a non-Ingres System Administrator account, imadb is
created as the process owner for VMSINSTAL rather than the installation owner
configured earlier on. When Ingres is started, the RMCMD process will hang as it
is running as a user that is unable to connect to the RMCMD catalogs in imadb.
The workaround is to install Ingres as the intended Ingres System Administrator.

http://ca.com/

Schema Checking

Considerations for Alpha OpenVMS A–3

Schema Checking
Ingres reserves a number of new keywords, mostly for support of SQL additions.
If names such as substring, first, or cache are used as column names, you must
change the database schema. For a list of Ingres reserved words, see the
appendix “Keywords” and the SQL Reference Guide.

If you are concerned that some column names in your database may conflict with
reserved words, you can take a copy of the schema from the current installation
and load it into an Ingres database. You should extend these checks to the
applications to verify that tables and views created at runtime are not affected by
the new keywords. Conflicts found in the schema and applications must be
removed before moving to Ingres.

Rebuilding Applications
In addition to migrating data, you must rebuild all applications that connect
locally to an existing Ingres installation.

The following compilers have been tested and are known to work with Ingres for
OpenVMS. For the latest information, see the Readme:

HP Ada HP BASIC

HP C HP COBOL

HP C++ HP Pascal

HP Fortran

Building Member_Aligned Against Ingres 2.6 or r3

Note: This section applies only to migrating from releases prior to Ingres II
2.0/0011 (axm.vms/00).

With the move to a member_aligned version of Ingres, some applications must
be rebuilt. Applications that connect directly to an installation located on the
same node, or through Ingres Net on the client node, must be rebuilt.

Building Vision and Application-By-Forms applications member_aligned is the
default behavior, with no further changes being required from the developer.

C /MEMBER_ALIGNED

Pascal /ALIGN=ALPHA_AXP

Rebuilding Applications

A–4 Migration Guide

COBOL /ALIGNMENT=PADDING

Fortran /ALIGNMENT=ALL

If an application cannot be built using Alpha member alignment, it is possible to
rebuild it with the Ingres components naturally aligned. The steps needed for C
and COBOL applications are described in the following sections.

These changes require modification to the Ingres supplied files only and not the
application code. Even by performing the steps listed here, you still must
recompile all parts of the application that interface with Ingres or that use any
structures declared in the Ingres header files.

By default, user applications are built using the same compiler options used to
build the Ingres libraries and applications. If these options are not used, proceed
carefully.

The introduction of the member_aligned version of Ingres came about when
alignment-related memory issues were encountered in Ingres II 2.0/9808
(axp.vms/00). If any applications are built using un-aligned structures with the
communicating interface to Ingres, data corruption is likely to occur.

For C Applications

To build C applications byte-aligned with Ingres, a number of files require
modification. Any modifications made may need to be re-applied following the
installation of an Ingres patch.

The first files to modify are the C header files supplied in the following
directories:
II_SYSTEM:[INGRES.DEMO.API.ASC]

II_SYSTEM:[INGRES.DEMO.UDADTS]

II_SYSTEM:[INGRES.FILES]

At this time, the only header files that contain Ingres structure definitions need
modification, these are:
II_SYSTEM:[INGRES.DEMO.API.ASC]ASC.H
II_SYSTEM:[INGRES.DEMO.UDADTS]UDT.H
II_SYSTEM:[INGRES.FILES]ABFURTS.H,
II_SYSTEM:[INGRES.FILES]EQSQLCA.H,
II_SYSTEM:[INGRES.FILES]EQSQLDA.H,
II_SYSTEM:[INGRES.FILES]FRAME2.H,
II_SYSTEM:[INGRES.FILES]FRAME60.H,
II_SYSTEM:[INGRES.FILES]FRAME61.H,
II_SYSTEM:[INGRES.FILES]IIADD.H,
II_SYSTEM:[INGRES.FILES]IIAPI.H,
II_SYSTEM:[INGRES.FILES]OSLHDR.H,
II_SYSTEM:[INGRES.FILES]RAAT.H,
II_SYSTEM:[INGRES.FILES]SPATIAL.H

Rebuilding Applications

Considerations for Alpha OpenVMS A–5

On the first line in each of the above files add:
#pragma member_alignment save

#pragma member_alignment

On the last line in each of the above files add:
#pragma member_alignment restore

Note: The "#" of the #pragma instruction must be the first character on the line.

The purpose of these pragmas is to direct the compiler to naturally align the
elements of the defined structures, then to restore the alignment strategy used
before the header file was included.

One further change is required to allow Application-By-Forms and Vision
applications to successfully build with unaligned code. In
II_SYSTEM:[INGRES.FILES]DCC.COM, replace the line
$ cc/standard=vaxc/float=ieee_float/nooptimize/nolist

with:
$ cc/NOMEMBER_ALIGNMENT/GRANULARITY=BYTE -
/standard=vaxc/float=ieee_float/nooptimize/nolist

For COBOL Applications

To achieve the same result for embedded COBOL applications, the following
statements must be added to these files:
II_SYSTEM:[INGRES.FILES]EQSQLCA.COB, II_SYSTEM:[INGRES.FILES]ESQLDA.COB

On the first line of the above files, add:
*DC SET ALIGNMENT

On the last line of the above files, add:
*DC END-SET ALIGNMENT

The II_SYSTEM:[INGRES.FILES]UTCOM.DEF file requires the removal of the
qualifier "/alignment=padding" from the COBOL compile statements.

Upgrading from Ingres 6.4 B–1

Appendix

B Upgrading from Ingres 6.4

Considerations for Ingres 6.4
This section describes additional considerations when loading Ingres 6.4
databases and applications into the new development installation.

Preparing Your Applications

Check for the following additional application issues after successfully creating
databases and applications in the Ingres development installation.

UPDATE . . . FROM Semantics Change

In Ingres 6.4/05 and earlier, the “ambiguous replace” test allowed an update
using the UPDATE…FROM statement if each target row was being updated
with an unambiguous value. Ingres 6.4/06 and higher releases test for multiple
FROM rows and generate an ambiguous replace error message even if all the
FROM rows generate the same replacement value.

For example, Ingres 6.4/05 and earlier allowed the following update:
UPDATE table_1
 FROM table_2
 SET column_3 = 3;

even though there is no WHERE qualification joining the tables, since the
replacement value was non-ambiguous. In later releases, an “ambiguous
replace” error message displays.

The recommended approach for this semantics change is to review all
applications for ambiguous updates and change them to use EXISTS or IN,
instead of a join. If this is not feasible, the original UPDATE . . . FROM handling
can be restored by setting the DBMS parameter “ambig_replace_64compat” to
ON in Configuration-By-Forms.

Considerations for Ingres 6.4

B–2 Migration Guide

Decimal Constant Semantics Change

With the introduction of the DECIMAL data type, fixed-point literals such as 1.0
are now considered DECIMAL, rather than FLOAT.

Typically, this does not matter, as Ingres does appropriate type conversions.
However, it is important when doing a CREATE TABLE . . . AS SELECT with a
constant in the SELECT result list.

For example:
CREATE TABLE table_1
 AS SELECT column_1, column_2, column_3=1.0
 FROM table_2;

In Ingres 6.4, the column_3 is created as FLOAT8; in Ingres it is created as a
DECIMAL(2,1) column. This may result in overflow in an application.

The recommended approach is to examine uses of fixed-point constant usage in
applications and change them to floating point constants, or add an explicit
FLOAT8 type conversion.

A less thorough but easier alternative is to set the environment variable
II_NUMERIC_LITERAL to FLOAT, as follows:
setenv II_NUMERIC_LITERAL FLOAT

Ingres then interprets fixed-point constants as floats rather than decimals. If you
decide to use II_NUMERIC_LITERAL, it will be necessary for every user of the
applications to set II_NUMERIC_LITERAL in their environment.

Greater Sensitivity to BYREF Errors

Ingres 6.4 4GL programs are insensitive to length and type errors when returning
BYREF values to a calling program. Ingres is more sensitive to return values that
are too long or the wrong type. In some cases, this can result in programs
aborting and segmentation violations. The cure is to ensure that the called and
calling routines return values of compatible length and type.

An as interim fix, an environment variable can be set to cause the 4GL runtime
system to pass parameters the way 6.4 did: all integers forced to 4-byte, all floats
forced to 8-byte. Character string passing is not affected. The environment
variable setting is:
setenv II_PARAM_PASSING FORCEMAX

Considerations for Ingres 6.4

Upgrading from Ingres 6.4 B–3

Journaling On by Default

In Ingres 6.4, if a database was journaled, a newly-created table would not be
journaled unless WITH JOURNALING was explicitly stated.

In Ingres, journaling is on by default. This means that if an application creates
temporary tables, those tables will be journaled; this may consume more system
resource, resulting in Ingres applications running more slowly than expected.

You can turn default journaling off by changing the Configuration-By-Forms
parameter “default_journaling.” Alternative options are to issue a SET
NOJOURNALING statement at the beginning of an application, create
temporary tables WITH NOJOURNALING, or use session tables.

Greater Sensitivity to Arithmetic Errors

Ingres 6.4 ignores a number of arithmetic error conditions (such as floating point
overflow and divide-by-zero). Ingres correctly reports arithmetic errors on all
platforms. If an application generates arithmetic exceptions when tested with
Ingres, it is probable that the application had problems in Ingres 6.4 that were
not reported. The application must be corrected.

4GL TABLE_KEY Type Conversions

Conversion of 4GL VARCHAR variables to the TABLE_KEY type gives length
errors. Avoid this by converting to char first:
TABLE_KEY(CHAR(varcharVariable))

Some 6.4 releases of 4GL had problems with variables of type TABLE_KEY. If
you were doing type conversions to avoid the use of TABLE_KEY variables,
consider removing the conversion altogether and using the TABLE_KEY type
directly.

User-Defined Data Type Changes

If you are using Object Management Extension to declare user-defined data types
in the server, be aware of some changes in calling sequences. For details, see the
Object Management Extension User Guide.

Considerations for Ingres 6.4

B–4 Migration Guide

Summary

Many of the changes required for Ingres are backward compatible with Ingres
6.4. Make application changes in the Ingres 6.4 installation, and bring them
forward to the Ingres installation for testing. In this way, you do not have to
freeze application development while preparing for Ingres.

At this stage, resist the temptation to make Ingres-specific application changes.
While an outer join or a session temp table may enhance performance, there is
plenty of time to add performance enhancements after the upgrade.

Preparing Your System

Take the following system preparation steps.

Ingres Startup and Shutdown

Ingres uses new commands for startup and shutdown: ingstart and ingstop
instead of iistartup and iishutdown. If you have customized shell scripts that
start and stop Ingres, you must change them. Verify the changes in the
development Ingres installation and have the revised scripts ready for the
production environment at time of upgrade.

If you are running multiple DBMS servers with Ingres 6.4, you should be able to
simplify your startup and shutdown procedures. Ingres supports multiple DBMS
servers directly from the Ingres configuration.

ingprenv Replaces ingprenv1

In Ingres, the ingprenv command replaces the Ingres 6.4 ingprenv1 command,
which displayed one Ingres environmental variable. Shell scripts that use
ingprenv1 must be changed.

It is possible to recreate ingprenv1 as follows:
echo 'exec $II_SYSTEM/ingres/bin/ingprenv $*' >/usr/local/bin/ingprenv1
chmod +x /usr/local/bin/ingprenv1

Archiver Exit Shellscript

Ingres has a sample Archiver exit script, acpexit.def. If the Ingres 6.4 acpexit
script was customized, you must carry over these changes to the Ingres
installation.

Upgrading from 6.4 Using Upgradedb

Upgrading from Ingres 6.4 B–5

For information about the acpexit script, see the chapter “Customization
Options” in the System Administrator Guide.

Transaction Log Size

Generally, Ingres uses less transaction log file space than Ingres 6.4. A few
operations may use more (for example, MODIFY TO MERGE). To allow for its
improved logging algorithms, Ingres reserves transaction log space that it may
not actually write.

The force-abort limit cannot be set as close to log-full as was possible in Ingres
6.4.

If your Ingres 6.4 transaction log was barely large enough, it may be advisable to
increase the size before or during the upgrade.

Upgrading from 6.4 Using Upgradedb
Upgrading using upgradedb transforms your database in-place from Ingres 6.4
to the new version of Ingres.

Due to the large number of enhancements made, the upgradedb utility performs
an intricate task when upgrading a 6.4 database. Upgradedb has been carefully
tested, however, and most sites should be able to use it. In addition, the
upgradedb procedure described in this section is designed so that the upgradedb
utility has to perform as little work as possible, so that the utility will correctly
handle the upgrade tasks.

In the procedure in this section, each database is prepared by dropping all
objects that can be recreated, that is, by dropping everything but the base tables.
Each base table must be checked to make sure it is valid and has no internal
damage. After the upgrade, the various database objects are recreated.

The procedure directs you to cut and paste the output of unloaddb to generate
SQL that recreates database objects and storage structures. If procedures already
exist to recreate database objects and storage structures, you can use these
instead. Make sure, however, that the procedures recreate all the relevant objects.
If users or applications dynamically create database objects, it may be safer to cut
and paste from unloaddb.

The upgradedb procedure assumes that you can become any user who owns
objects in any database (using login or UNIX “su”). If this is not feasible, you can
run as the installation owner (default user ID is ingres), and use the -u{user} flag
to pretend to be that user whenever you must run an Ingres command.

Upgrading from 6.4 Using Upgradedb

B–6 Migration Guide

Procedure

Follow this step-by-step procedure to perform an upgradedb upgrade from
Ingres 6.4.

Procedure Notation In this procedure, the notation [Each DB] means: “For each database, not
including the iidbdb, become the DBA for that database, cd to the unload
directory for the database created in Step 1, and perform this step.”

Do not include the iidbdb or Ingres Distributed Option databases unless
instructed.

If using the Distributed Option, remember to include the coordinator database in
the list of databases.

Step 1: [Each DB Including Distributed Option DDBs] Create Unload Directory

Create a directory for each database. This directory is used to hold various
scripts (but no data). The disk space needed is a maximum of 1 MB per directory.
Make the directory writable by anyone.

UNIX On UNIX, use these commands:
mkdir /someplace/dbname
chmod 777 /someplace/dbname

Windows On Windows, use this command:
mkdir d:\someplace\dbname

Step 2: [Each DB Including Distributed Option DDBs] Run Unloaddb

Note on Steps 2 through 4: You can omit Steps 2 through 4 if procedures
already exist to recreate all database objects and storage structures. However, it
will be necessary to make the appropriate changes to the oi_prep.sh script (see
Step 9: [Each DB] Remove Non-table Objects in this appendix) for re-modifying
all tables.

Run unloaddb against each database. The unloaddb command does not unload
the database; it simply creates copy in and copy out scripts. You can edit these
scripts to produce a collection of scripts that recreate various database objects
and storage structures.

Note: If using the Distributed Option, unload the CDB in the same way as for a
local database. For a DDB, use unloaddb with the /star option.

Upgrading from 6.4 Using Upgradedb

Upgrading from Ingres 6.4 B–7

For a regular DB or CDB:
unloaddb dbname

For a Distributed Option DDB:
unloaddb ddbname/star

Step 3: [Each DB Including Distributed Option DDBs] Check for Obsolete Users

Examine the unload.ing and reload.ing scripts created in Step 1. Each script
contains one line for each user who owns a database object. Make sure that all
the users listed are valid; old databases may have objects created by users who
no longer exist.

For any unwanted users, delete the relevant lines from unload.ing and
reload.ing. Delete the cp{user}.in and cp{user}.out files, and go into the database
and clean out the unwanted objects.

Step 4: [Each DB] Edit the Unloaddb Output

The unloaddb output needs to be modified for recreating just the database
objects and storage structures. You must edit each cp{user}.in file that unloaddb
created to extract the following statements:

■ Create rule statements into a file named {user}_rule.sql

■ Create procedure related statements into {user}_dbp.sql

■ Create dbevent related statements into {user}_event.sql

■ Modify statements into {user}_modify.sql

■ Modify and create index statements into {user}_modindex.sql

■ All other non-base-table related statements into {user}_grantview.sql. This
file will contain grants, QUEL permits, QUEL integrities, and view
definitions.

You can perform this step manually with a text editor.

For UNIX, the extract_unloaddb.sh shellscript is available that extracts one user’s
object definitions. The script is available on the Computer Associates Technical
Support web site, accessible from http://ca.com.

The $ingres user should not own any non-catalog objects, so do not process the
cp_ingre.in file that unloaddb creates.

As a result of this step, SQL scripts have been created that can recreate any
database object or storage structure owned by any user in any database.

http://ca.com/

Upgrading from 6.4 Using Upgradedb

B–8 Migration Guide

Step 5: [Each DB Including iidbdb] Checkpoint the Database (Optional)

Note: This step is optional because you will take a system backup and another
checkpoint later.

Checkpoint all databases. Copy the checkpoint files to tape and verify that the
tape can be read.

Step 6: Disable User Access

Disable user access.

From this step through the end of the upgrade, the production system is not
available for use. Make sure that users are not able to access the databases until
the upgrade is complete.

Step 7: Shut Down Ingres and Back Up System

Perform a clean shutdown of Ingres, clearing all transactions from the
transaction log. To achieve this, shut down Ingres, restart Ingres, and then shut it
down again. Check the recovery process log (II_RCP.LOG) for the message “RCP
Shutdown completed normally.”

Take a system backup using a command appropriate to the platform. Make sure
you include all Ingres directories: data, checkpoint, journal, dump areas, and the
$II_SYSTEM/ingres directory containing Ingres files and executables. Back up
the application directories.

Watch for symbolic links and cross-mounts; make sure real data is saved and not
a symbolic link.

If Ingres is typically started up at boot time, include the root file system in the
backup. Alternatively, print a copy of any Ingres boot time startup and
shutdown scripts.

For maximum safety, perform this step twice. At minimum, after the backup
completes, check the backup media to ensure that the backup can be read. If your
backup medium is tape, use new tapes, and clean the tape drive before the
backup.

After completing the backup, restart Ingres.

Upgrading from 6.4 Using Upgradedb

Upgrading from Ingres 6.4 B–9

Step 8: [Each DB] Print Optimizer Statistics (Optional)

 If your upgrade plan allows enough downtime to run a full optimizedb against
your databases (after the upgrade), you can omit this step. If your plan does not
allow enough downtime, perform this step as a shortcut.

Note: Be aware that using this shortcut may result in some of the new Ingres
metrics not being available; query performance may suffer until a full
optimizedb can be completed.

Dump the existing optimizer statistics. Run statdump with the -o flag to a file for
each database, as follows:
statdump -o dbname.stats dbname

Step 9: [Each DB] Remove Non-table Objects

Drop all non-table objects from the database including:

■ Optimizer statistics

■ Views

■ Rules

■ Database procedures

■ Database events

■ Secondary indexes

■ Grants and QUEL permits

■ QUEL integrities

In addition, modify all tables to heap.

The purpose of this step is to reduce the database to base tables.

Some database objects such as procedures and views can be very complicated,
and some past versions of upgradedb did not always process them successfully.

Additionally, processing of some objects (grants in particular) is slow and
expensive. Dropping the grants and later recreating them avoids any possible
failure due to lack of transaction log space.

oi_prep.sh To perform this task automatically, you can use the shell script oi_prep.sh. The
script is available at the Computer Associates Technical Support web site,
accessible from http://ca.com.

Using the C shell:
oi_prep.sh dbname |& tee oi_prep.log

http://ca.com/

Upgrading from 6.4 Using Upgradedb

B–10 Migration Guide

If there are any dependent views, “drop” errors messages may be reported on
those views; (oi_prep.sh does not bother to drop views in reverse dependency
order). Ignore those “drop” errors.

Verifydb Run verifydb checks against the database. The verifydb -odbms command may
output messages:
S_DU1611_NO_PROTECTS iirelation indicates that there are protections for table
(owner), but none are defined.

S_DU0305_CLEAR_PRTUPS Recommended action is to clear protection information from
iirelation, and S_DU1619_NO_VIEW iirelation indicates that there is a view
defined for table (owner), but none exists.

S_DU030C_CLEAR_VBASE Recommended action is to clear view base specification from
iirelation.

You can ignore these messages. Also, ignore the “patch warning” message that
warns of the loss of user tables in “runinteractive” mode. This mode will not be
used.

Some databases may produce a “verifydb failed” message and then abort. If this
happens, run the Terminal Monitor with the update system catalogs flag, as
follows:
sql +U dbname

SELECT * FROM iistatistics;\go

No rows should be returned. If there are rows, this is the probable cause of the
verifydb problem. Delete the rows:
DELETE FROM iistatistics;COMMIT;\go\quit

Rerun the verifydb command as shown at the end of the oi_prep.sh. If error
messages are returned from verifydb, correct the problems before continuing.
Contact Computer Associates Technical Support for help if necessary.

Do not process Distributed Option distributed databases.

Step 10: [Each DB] Record Database Information

Run infodb against each database, saving the output. The output will be needed
later. You will need to know, for example, whether the database was journaled,
the data locations where the database resides, and in what order the locations
were configured.

Run infodb as follows:
infodb dbname >infodb.out

If no dbname is specified, infodb prints a report for each database.

Upgrading from 6.4 Using Upgradedb

Upgrading from Ingres 6.4 B–11

Step 11: Clean iidbdb Database

Become the user that owns the Ingres installation, and run a subset of Step 9 (see
Step 9: [Each DB] Remove Non-table Objects in this appendix) against the master
database iidbdb. It is assumed that there are no objects created by users in the
iidbdb.
statdump '-u$ingres' -zdl iidbdb

sysmod -s iidbdb

verifydb -mrun -sdbname iidbdb -opurge

verifydb -mrun -sdbname iidbdb -odbms

Messages from verifydb can be handled in the same way as in Step 9.

Step 12: [Each DB Including iidbdb] Checkpoint and Turn Off Journaling

Checkpoint each database, using the ckpdb command with –j option to turn off
journaling.

If upgradedb fails, you can use this checkpoint to recover and try again.

Save the configuration file stored in the dump area after each checkpoint. The
configuration file is small.

To do this, issue these commands:
ckpdb -d -j dbname

cp $II_DUMP/ingres/dmp/default/dbname/aaaaaaaa.cnf {somewhere secure}

Tip: The iidbdb needs the –s option for ckpdb. The iidbdb database does not
have an “unload” directory. Store the aaaaaaaa.cnf file in a safe place.

Step 13: Record Ingres Configuration

As the installation owner, execute the “showrcp” command and record the
results.

Record the contents of the rundbms.opt file found in $II_SYSTEM/ingres/files.

You will use this information later as a guide for configuring Ingres. The Ingres
installation procedure does not preserve the Version 6.4 parameter settings.
During installation, the ingres/files directory is deleted, so save the information.

Upgrading from 6.4 Using Upgradedb

B–12 Migration Guide

Step 14: Shut Down Ingres

Shut down Ingres with the iishutdown command.

Step 15: Disable Ingres Startup

If Ingres starts automatically when the machine boots up, turn auto-starting off
until the upgrade is complete.

On most UNIX platforms, a file in a system startup directory performs Ingres
startup and shutdown; place an “exit 0” at the top of this file. The system
administrator may need to perform this step if it requires root privilege. (The
system startup directory depends on your platform—/etc/init.d, or /sbin/init.d,
or a similar name).

On Windows, if Ingres is run as a system service, set the service to start manually
instead of automatically.

Make sure that the operating system is correctly configured for your new version
of Ingres (see Preparing Your System in the chapter “Getting Started”).

Reboot, if necessary, to put the operating system parameter changes into effect.

Step 16: Preserve Site Modifications

If you have customized any files that are distributed as part of Ingres, you must
copy them because they will be lost during the upgrade. Any custom files you
have added to the $II_SYSTEM directory tree will remain.

Commonly, customizations are made to the termcap and keyboard map files in
$II_SYSTEM/ingres/files. Customizations are also made to local collation
sequence files. Save the original collation definition files and the compiled files in
$II_SYSTEM/ingres/files/collation.

Copy customized files to a safe place. Do not copy them to /tmp or anywhere in
$II_SYSTEM/ingres directory.

If you cannot identify all your customized files, you can do the following to
ensure that you preserve the necessary files:

1. Delete all .log and .LOG files from $II_SYSTEM/ingres/files

2. Copy to a safe place the entire contents of the following directories:

■ all .opt files

■ $II_SYSTEM/ingres/bin

Upgrading from 6.4 Using Upgradedb

Upgrading from Ingres 6.4 B–13

■ $II_SYSTEM/ingres/files

■ $II_SYSTEM/ingres/rep

■ $II_SYSTEM_ingres/files/rep

■ $II_SYSTEM/ingres/files/dayfile

■ $II_ingres/files/startup

■ $II_SYSEM/ingres/files/startsql

■ $II_SYSTEM/ingres/utility

This procedure copies more files than necessary, but you can delete the copy
after Ingres has been running live for a period.

Do not delete the copy immediately when the upgrade completes, because you
may discover weeks later that you need the old version of a file (for example, a
Vision template or keyboard map) from the original $II_SYSTEM/ingres
directory.

UNIX
On UNIX, to copy these files, use commands similar to the following:

cd $II_SYSTEM/ingres

tar cf - bin files rep utility | (cd /someplace/safe;tar xf -)

Step 17: Fix Logins

If necessary, make sure that the login for the installation owner sets
LD_LIBRARY_PATH or the platform equivalent. Make sure that the login for the
user does not use ingprenv1, or install your ingprenv1 substitute. See Preparing
Your System in the chapter “Getting Started.” Check all your database owner
(DBA) logins to ensure that they are properly set up for Ingres, with
LD_LIBRARY_PATH or equivalent, and no use of ingprenv1.

LD_LIBRARY_PATH or equivalent must be defined for the user session that you
will use to install and upgrade Ingres.

Step 18: Save Ingres Settings

The upgrade runs more smoothly if the Ingres 6.4 executables, control files, and
environment variables are deleted, which you will do in the next step. However,
you do not want to lose your installation ID and default locations, which are kept
in a file named symbol.tbl.

Copy $II_SYSTEM/ingres/files/symbol.tbl to a safe area not in the Ingres
directory tree.

Upgrading from 6.4 Using Upgradedb

B–14 Migration Guide

Step 19: Clean Up Ingres 6.4

To guarantee a clean environment for Ingres, invoke the following commands.
The rm command removes existing 6.4 files.
cd $II_SYSTEM/ingres

rm -rf bin files lib utility dbtmplt version.rel admin

mkdir files

Copy your saved symbol.tbl back into the $II_SYSTEM/ingres/files directory.

Note: Issuing the above command will cause Ingres Net definitions to be lost. As
an alternative, you can run the rm command without specifying the files
subdirectory. The Ingres Net definitions will be preserved, but the installation
will not be as clean.

Step 20: Create Work Location

The Ingres installation procedure asks for a location for temporary files and
sorting, and creates the directories if they do not exist. However, you should
create this location manually because some versions of the installation procedure
may not properly set the protections for the directories, which can cause
upgradedb to fail when upgrading the iidbdb database.

For information on placement of your default work location, see the Database
Administrator Guide.

As the installation owner, assume a work location called /mywork:

UNIX

/mywork:

mkdir /mywork/ingres

mkdir /mywork/ingres/work

mkdir /mywork/ingres/work/default

mkdir /mywork/ingres/work/default/iidbdb

chmod 755 /mywork/ingres

chmod 700 /mywork/ingres/work

chmod 777 /mywork/ingres/work/default

chmod 777 /mywork/ingres/work/default/iidbdb

Windows

md \mywork\ingres

md \mywork\ingres\work

md \mywork\ingres\work\default

md \mywork\ingres\work\default\iidbdb

Upgrading from 6.4 Using Upgradedb

Upgrading from Ingres 6.4 B–15

Step 21: Install Ingres

To install Ingres, see the Ingres installation instructions for your platform.

During the installation process, the DBMS Server setup asks whether all
databases are to be upgraded; answer No. The installation procedure
automatically upgrades the iidbdb. If the upgrade of iidbdb fails, see the
appendix “Troubleshooting Upgradedb Problems.” It is better to complete the
Ingres setup, and then use the upgradedb command to upgrade the user
databases.

After the iidbdb is upgraded, the DBMS Server setup attempts to upgrade imadb
and install Remote Command Server objects into imadb. Some versions of
upgradedb neglect to create imadb first, and you will get “Database does not
exist: imadb” errors. These will be corrected in the next step.

Upgrading to Versions That Require a Patch

UNIX
You can install Ingres service packs without having to install a base release of
Ingres first. If you are upgrading to an older Ingres version that requires an
overlay patch instead of a service pack, follow this procedure:

1. Run ingbuild. When asked whether you want to set up all the Ingres
components, respond No. Exit ingbuild.

2. Install the Ingres patch.

3. Run ingbuild again. Select Current, then SetupAll.

4. Follow the prompts to complete the Ingres setup.

Setup now uses the fixed version.

Step 22: Create imadb Database

Note: Perform this step only if you received “Database does not exist: imadb”
messages during the DBMS setup phase of your Ingres install.

Create the imadb database.

As the installation owner, execute these commands:

UNIX

ingstart

cd $II_SYSTEM/ingres/vdba

createdb '-u$ingres' imadb –f nofeclients

sql '-u$ingres' imadb <makimau.sql

rmcmdgen

ingstop

Upgrading from 6.4 Using Upgradedb

B–16 Migration Guide

Windows

ingstart

cd %II_SYSTEM%\ingres\vdba

createdb -u$ingres imadb –f nofeclients

sql -u$ingres imadb <makiman.sql

rmcmdgen

ingstop

As the makimau or makiman SQL scripts run, you see a series of messages such
as “E_US0AC1 'some-name' does not exist or is not owned by you.” These are
normal and can be ignored.

Step 23: Restore Site Modifications

Restore any site-specific files that you copied in Step 16 (see Step 16: Preserve Site
Modifications in this appendix).

Checkpoint Template If the checkpoint template file cktmpl.def has been modified, the modifications
may need to be carried forward into Ingres. The cktmpl.def from Ingres 6.4
cannot be used with Ingres, as the file format has changed. This means that you
must recreate the changes using the Ingres 6.4 cktmpl.def as a guide. See the
Ingres 6.4 Database Administrator’s Guide.

Archiver Exit Script If the archiver exit script acpexit was changed in Ingres 6.4, you must make the
changes to the Ingres template (acpexit.def), and then move that file to
$II_SYSTEM/ingres/files/acpexit.

Step 24: Start Ingres

Run ingstart to start Ingres.

Step 25: Run Upgradedb Utility

Run the upgradedb utility to upgrade databases.

You can upgrade databases one at a time or all at the same time. Log the
upgradedb output to a file.

To upgrade one at a time:
upgradedb dbname

To upgrade all at the same time:
upgradedb –all

Upgrading from 6.4 Using Upgradedb

Upgrading from Ingres 6.4 B–17

Example of logging upgradedb output to a file:
upgradedb -all |& tee upgradedb.log

Troubleshooting If errors occur, see the appendix “Troubleshooting Upgradedb Problems.”
Correct the errors and rerun the upgradedb utility.

If the upgradedb command starts and then hangs with no error indication, the
Remote Command Server may be interfering with the process. This is
particularly likely if you are upgrading to Ingres II version 2.0 instead of Ingres.
To fix, stop the Remote Command Server, as follows:
rmcmdstp

You can use Configuration-By-Forms or Visual Configurator to turn off the
Remote Command Server until your upgrade is finished: select Remote
Command Server and use EditCount to set the startup count to zero.

Step 26: Configure Ingres

Run Configuration-By-Forms (CBF) and initially configure the Ingres installation.
Use the rundbms.opt and showrcp information from Ingres 6.4 as a guideline.
For information about CBF and the various tuning parameters, see the System
Administrator Guide.

For information on the correlation between 6.4 and Ingres parameter names, see
Corresponding Parameter Names in this appendix.

Derived parameters are recalculated when values they depend on are changed. If
derived parameters are set, they can be “protected” against change.

Ingres versions from 2.0 through 2.6 may calculate very large default lock and
resource limits parameters. Check the lock_limit and resource_limit settings, and
consider reducing these limits to the Ingres 6.4 settings.

On OS-thread platforms, do not turn on async_io; and do not declare the
II_NUM_SLAVES Ingres variable.

Ingres supports larger qef_sort_mem values than Ingres 6.4. Ingres may not need
as much qsf_memory as did Ingres 6.4. OS-thread platforms should not reduce
quantum_size, as it does not improve performance on those platforms.

Step 27: Set Up Ingres Net

Run netutil to create the vnode definitions for the remote installations. If
installation passwords are needed, you must run mkvalidpw. See the System
Administrator Guide or the Readme for your platform.

Upgrading from 6.4 Using Upgradedb

B–18 Migration Guide

If there are NFS client-only installations that have not been set up, run ingmknfs
to set them up.

Step 28: [Each DB] Recreate Objects

Using the scripts generated by Step 4 (see Step 4: [Each DB] Edit the Unloaddb
Output in this appendix), recreate the views.

Recreate in the following sequence:

1. Views, QUEL integrities, and grants:
sql -uuser dbname <user_grantview.sql

2. Dbevents:
sql -uuser dbname <user_event.sql

3. Database procedures:
sql -uuser dbname <user_dbsp.sql

4. Rules:
sql -uuser dbname <user_rule.sql

Remember to run all four scripts for each user who owns objects in each
database.

If your application system has its own scripts to recreate database objects, you
may use them instead of the unloaddb-generated scripts.

Step 29: [Each DB] Reapply Storage Structures

For each user_modindex.sql script generated by Step 4 (Editing the Unloaddb
Output), reapply storage structures and indexes:
sql -uuser dbname <user_modindex.sql

If your application system has its own scripts to reapply storage structures and
create indexes, you may use them instead of the unloaddb-generated scripts.

Step 30: [Each DB] Reapply Optimizer Statistics

Regenerate optimization statistics. You can do this either by regenerating
statistics from scratch or by using the original statistics printed from the Ingres
6.4 installation earlier in this upgrade procedure (see Step 8: [Each DB] Print
Optimizer Statistics (Optional) in this appendix.

Upgrading from 6.4 Using Unload/Reload

Upgrading from Ingres 6.4 B–19

If there is sufficient time, we recommend that you regenerate the optimizer
statistics using the procedures of your application system. Ingres computes more
statistics than did 6.4.

If time is short, and if you printed the original statistics in Step 8, you can read
them back in with the –i option to optimizedb:
optimizedb dbname -i dbname.stats

Step 31: [Each DB including iidbdb] Checkpoint the Database

Checkpoint each database. If the database was journaled previously, use the +j
flag to turn on journaling.

To know which databases were journaled, see the infodb output from Step 10
(see Step 10: [Each DB] Record Database Information in this appendix).

The iidbdb should always be journaled, regardless of whether it was journaled in
the 6.4 installation.

Step 32: Install Upgraded Applications

Install the Ingres versions of the applications. Then restore user logins and
resume normal operation.

This completes the upgradedb upgrade procedure.

Upgrading from 6.4 Using Unload/Reload
The unload/reload upgrade avoids the upgradedb program (except for iidbdb),
in favor of unloading the Ingres 6.4 databases to flat files, recreating the
databases under Ingres, and then reloading the databases. This approach has the
advantage of starting with clean databases, but requires more time and disk
space than does the upgradedb method.

Note: Databases using the system-maintained logical key feature are best
upgraded using upgradedb. Tables that contain SYSTEM_MAINTAINED
table_key or object_key columns cannot be safely unloaded and reloaded
without additional work. The reload step generates all new logical key values. If
other tables reference the logical key columns, the new values must be manually
propagated to those tables.

Upgrading from 6.4 Using Unload/Reload

B–20 Migration Guide

Two Upgrade Types

You must choose one of the following variations of the unload/reload
procedure:

■ In-place upgrade, which replaces the 6.4 installation with the new Ingres
installation. The master database (iidbdb) is upgraded with upgradedb, even
though other databases are unloaded and reloaded. Because the iidbdb
remains, all your locations, users, groups, and roles still exist in the new
installation.

■ Clean install upgrade, which leaves the 6.4 installation alone. Ingres is
installed into a completely new installation. (The new installation may even
be on a different machine.) When performing a clean install upgrade, you
must take extra steps to recreate locations and move users, groups, and roles
from the 6.4 installation to the new one.

Front-end Catalogs

The hardest part of the unload/reload upgrade is dealing with the front-end
catalogs. These catalogs are unloaded in Ingres 6.4 format, and cannot be loaded
into an Ingres database. To circumvent this problem, the Ingres database is
created without front-end catalogs. The catalogs are then loaded in the Ingres 6.4
format and upgraded using the upgradefe program.

Procedure

Follow this step-by-step procedure to perform an unload/reload upgrade from
Ingres 6.4.

Procedure Notation In this procedure, the notation [Each DB] means: “For each database, not
including the iidbdb, become the DBA for that database, cd to the unload
directory for the database created in Step 1, and perform this step.”

If using the Distributed Option, include the coordinator database in the list of
databases.

Steps that apply to a particular upgrade type only (that is, in-place upgrade or
clean install upgrade) are marked accordingly.

Upgrading from 6.4 Using Unload/Reload

Upgrading from Ingres 6.4 B–21

Step 1: [Each DB Including iidbdb] Create Unload Directory

Create a directory for each database. The directory is used to hold scripts and
data from the unloaded database and requires a large amount of disk space. As
an estimate, the unloaded data is about the same size as the Ingres database;
however, compressed data can expand to take up much more space than the
Ingres database.

UNIX On UNIX, use these commands:
mkdir /someplace/dbname

chmod 777 /someplace/dbname

Windows On Windows, use this command:
mkdir d:\someplace\dbname

Step 2: [Each DB] Run Unloaddb

Run unloaddb against each database. The unloaddb command does not unload
the database; it simply creates scripts.

Note: If using the Distributed Option, unload the CDB in the same way as for a
local database. For a DDB, use unloaddb/star.

For a regular DB or CDB:
unloaddb dbname

For a Distributed Option DDB:
unloaddb ddbname/star

If doing a clean-install upgrade to a different machine that has a newer
architecture, binary data may not be compatible between the two machines. If
this is the case, use the unloaddb –c option, which causes an ASCII instead of
binary unload.

Step 3: [Each DB] Check for Obsolete Users

Old databases may have objects created by users who no longer exist.

Examine the unload.ing and reload.ing scripts created in Step 1. Each script
contains one line for each user who owns a database object. Make sure that all
the users listed are valid.

Upgrading from 6.4 Using Unload/Reload

B–22 Migration Guide

For any unwanted users, delete the relevant lines from the unload.ing and
reload.ing scripts. Delete the cp{user}.in and cp{user}.out files, and go into the
database and clean out these unwanted objects.

Step 4: [Each DB Including iidbdb] Checkpoint the Database (Optional)

Note: This step is optional. You can omit this step if you can rely on the system
backup to be taken in Step 6 (see Step 6: Shut Down Ingres and Back Up System
in this appendix).

Checkpoint each database and then copy the checkpoint files to a permanent
medium such as tape. If using tape, use fresh tape and verify that the tape can be
read.

Remember to checkpoint the iidbdb.

Step 5: Disable User Access

Disable user access.

Step 6: Shut Down Ingres and Back Up System

Note: This step is required only for an in-place upgrade. However, this is a
convenient time to get a complete backup of your production system before the
upgrade. Therefore, you may want to perform this step even if doing a clean
install upgrade.

Perform a clean shutdown of Ingres, clearing all transactions from the
transaction log. To achieve this, shut down Ingres, restart Ingres, and then shut it
down again. Check the recovery process log (II_RCP.LOG) for the message “RCP
Shutdown completed normally.”

Take a system backup using a command appropriate to the platform. Make sure
you include all Ingres directories: data, checkpoint, journal, dump areas, and the
$II_SYSTEM/ingres directory containing Ingres files and executables. Back up
the application directories.

Watch for symbolic links and cross-mounts; make sure real data is saved and not
a symbolic link.

If Ingres is typically started up at boot time, include the root file system in the
backup. Alternatively, print a copy of any Ingres boot time startup and
shutdown scripts.

Upgrading from 6.4 Using Unload/Reload

Upgrading from Ingres 6.4 B–23

For maximum safety, perform this step twice. At minimum, after the backup
completes, check the backup media to ensure that the backup can be read. If your
backup medium is tape, use new tapes, and clean the tape drive before the
backup.

After completing the backup, restart Ingres.

Step 7: [Each DB] Unload the Database

For each database, run the unload.ing script created by unloaddb. This unloads
the database into your unload directory.

Step 8: [Each DB] Print Optimizer Statistics (Optional)

If your upgrade plan allows enough downtime to run a full optimizedb against
your databases, you can omit this step. If your plan does not allow enough
downtime, perform this step as a shortcut.

Note: Be aware that using this shortcut may result in some of the new Ingres
metrics not being available; query performance may suffer until a full
optimizedb can be completed.

Dump the existing optimizer statistics. Run statdump with the -o flag to a file for
each database, as follows:
statdump -o dbname.stats dbname

Step 9: [Each DB] Record Database Information

Run infodb against each database, saving the output. The output will be needed
later. You will need to know, for example, whether the database was journaled,
the data locations where the database resides, and in what order the locations
were configured.

Run infodb as follows:
infodb dbname >infodb.out

Also, record whether the database is public or private. To find out, use the
catalogdb command. Select Databases, and then enter the database name. The
screen that appears has an Access field that indicates whether the database is
public or private.

Upgrading from 6.4 Using Unload/Reload

B–24 Migration Guide

Step 10: Record Database Privileges

As the installation owner, change directories to the unload directory for iidbdb
created in Step 1. Save private database access lists and user database privileges,
as follows:
sql iidbdb
\script dbaccess.out
select dbname, usrname
from iidbaccess
order by dbname, usrname
\go
\script
\script dbprivs.out
select *
from iidbprivileges
where database_name <> ''
order by database_name,grantee_name
\go
\script
\quit

This procedure creates two files, dbaccess.out and dbprivs.out.

Step 11: Save Users, Groups, and Roles

Note: This step is required only for a clean-install upgrade.

As the installation owner, change directory to the iidbdb unload directory, as
you did in the previous step. Run the following SQL to save users, groups, and
roles:
sql iidbdb
create table unload_tmp as
select name,status,default_group
from iiuser
where name not in ('ingres','$ingres','root')
\go
copy unload_tmp (
 name=c0comma,status=c0comma,default_group=c0nl
) into 'users.out'
\go
drop unload_tmp;commit
\go

 copy iiusergroup (
 groupid=c0comma,groupmem=c0nl
) into 'groups.out'
\go

 copy iirole(
 roleid=c0nl
) into 'roles.out'
\go
 \quit

Upgrading from 6.4 Using Unload/Reload

Upgrading from Ingres 6.4 B–25

Step 12: [Each DB] Destroy the Database

Note: This step is required only for an in-place upgrade.

Destroy each database using the destroydb command.

Step 13: Clean iidbdb Database

Note: This step is required only for an in-place upgrade.

Become the installation owner, and run the following steps against the master
database iidbdb. It is assumed that there are no objects created by users in the
iidbdb.
statdump '-u$ingres' -zdl iidbdb

sysmod -s iidbdb

verifydb -mrun -sdbname iidbdb -opurge

verifydb -mrun -sdbname iidbdb –odbms

ckpdb –s –j iidbdb

The verifydb -odbms command may issue the following messages:
S_DU1611_NO_PROTECTS iirelation indicates that there are protections for table
(owner), but none are defined.

S_DU0305_CLEAR_PRTUPS Recommended action is to clear protection information from
iirelation, and S_DU1619_NO_VIEW iirelation indicates that there is a view
defined for table (owner), but none exists.

S_DU030C_CLEAR_VBASE Recommended action is to clear view base specification from
iirelation.

You can ignore these messages. Also, ignore the “patch warning” message that
warns of the loss of user tables in “runinteractive” mode. This mode will not be
used.

Step 14: Record Ingres Configuration

As the installation owner, execute the “showrcp” command and record the
results.

Record the contents of the rundbms.opt file found in $II_SYSTEM/ingres/files.

You will use this information later as a guide for configuring Ingres. The Ingres
installation procedure does not preserve the Version 6.4 parameter settings.
During installation, the ingres/files directory is deleted, so save the information.

Upgrading from 6.4 Using Unload/Reload

B–26 Migration Guide

Step 15: Shut Down Ingres

Shut down Ingres with the iishutdown command.

Step 16: Disable Ingres Startup

Note: This step is recommended even if you are doing a clean installation
upgrade. By leaving the old 6.4 installation shut down, you eliminate the chance
that someone will connect to it by mistake later.

If Ingres starts automatically when the machine boots up, turn auto-starting off
until the upgrade is complete.

On most UNIX platforms, a file in a system startup directory performs Ingres
startup and shutdown; place an “exit 0” at the top of this file. The system
administrator may need to perform this step if it requires root privilege. (The
system startup directory depends on your platform—/etc/init.d, or /sbin/init.d,
or a similar name).

On Windows, if Ingres is run as a system service, set the service to start manually
instead of automatically.

Make sure that the operating system is correctly configured for your new version
of Ingres (see Preparing Your System in the chapter “Getting Started”).

Reboot, if necessary, to put the operating system parameter changes into effect.

Step 17: Preserve Site Modifications

If you have customized any files that are distributed as part of Ingres, you must
copy them because they will be lost during the upgrade. Any custom files you
have added to the $II_SYSTEM directory tree will remain.

Commonly, customizations are made to the termcap and keyboard map files in
$II_SYSTEM/ingres/files. Customizations are also made to local collation
sequence files. Save the original collation definition files and the compiled files in
$II_SYSTEM/ingres/files/collation.

Copy customized files to a safe place. Do not copy them to /tmp or anywhere in
$II_SYSTEM/ingres directory.

If you cannot identify all your customized files, you can do the following to
ensure that you preserve the necessary files:

1. Delete all .log and .LOG files from $II_SYSTEM/ingres/files

Upgrading from 6.4 Using Unload/Reload

Upgrading from Ingres 6.4 B–27

2. Copy to a safe place the entire contents of the following directories:

■ all .opt files

■ $II_SYSTEM/ingres/bin

■ $II_SYSTEM/ingres/files

■ $II_SYSTEM/ingres/rep

■ $II_SYSTEM_ingres/files/rep

■ $II_SYSTEM/ingres/files/dayfile

■ $II_ingres/files/startup

■ $II_SYSEM/ingres/files/startsql

■ $II_SYSTEM/ingres/utility

This procedure copies more files than necessary, but you can delete the copy
after Ingres has been running live for a period.

Do not delete the copy immediately when the upgrade completes, because you
may discover weeks later that you need the old version of a file (for example, a
Vision template or keyboard map) from the original $II_SYSTEM/ingres
directory.

UNIX
On UNIX, to copy these files, use commands similar to the following:

cd $II_SYSTEM/ingres

tar cf - bin files rep utility | (cd /someplace/safe;tar xf -)

Step 18: Fix Logins

If necessary, make sure that the login for the installation owner sets
LD_LIBRARY_PATH or the platform equivalent. Make sure that the login for the
user does not use ingprenv1, or install your ingprenv1 substitute. See Preparing
Your System in the chapter “Getting Started.” Check all your database owner
(DBA) logins to ensure that they are properly set up for Ingres, with
LD_LIBRARY_PATH or equivalent, and no use of ingprenv1.

LD_LIBRARY_PATH or equivalent must be defined for the installation owner
user session that you will use to install and upgrade Ingres.

If you are doing a clean-install upgrade on a different machine, make sure that
your login fixes are applied to the new machine, not to the old one.

Upgrading from 6.4 Using Unload/Reload

B–28 Migration Guide

Step 19: Save Ingres Settings

Note: This step is required only for an in-place upgrade.

The upgrade runs more smoothly if the Ingres 6.4 executables, control files, and
environment variables are deleted. However, you do not want to lose your
installation ID and default locations. These are kept in a file named symbol.tbl.

Copy $II_SYSTEM/ingres/files/symbol.tbl to a safe area not in the Ingres
directory tree.

Step 20: Clean Up Ingres 6.4

Note: This step is required only for an in-place upgrade.

To guarantee a clean environment for Ingres, invoke the following commands:
cd $II_SYSTEM/ingres

rm -rf bin files lib utility dbtmplt version.rel admin

mkdir files

Copy your saved symbol.tbl back into the $II_SYSTEM/ingres/files directory.

Step 21: Create Work Location

Note: This step is required only for an in-place upgrade.

The Ingres installation procedure asks for a location for temporary files and
sorting, and creates the directories if they do not exist. However, you should
create this location manually because some versions of the installation procedure
may not properly set the protections for the directories, which can cause
upgradedb to fail when upgrading the iidbdb database.

For information on placement of your default work location, see the Database
Administrator Guide.

As user ingres, assume a work location called /mywork:

UNIX

/mywork:

mkdir /mywork/ingres

mkdir /mywork/ingres/work

mkdir /mywork/ingres/work/default

mkdir /mywork/ingres/work/default/iidbdb

chmod 755 /mywork/ingres

chmod 700 /mywork/ingres/work

Upgrading from 6.4 Using Unload/Reload

Upgrading from Ingres 6.4 B–29

chmod 777 /mywork/ingres/work/default

chmod 777 /mywork/ingres/work/default/iidbdb

Windows

md \mywork\ingres

md \mywork\ingres\work

md \mywork\ingres\work\default

md \mywork\ingres\work\default\iidbdb

Step 22: Install Ingres

To install Ingres, see the Ingres installation instructions for your platform.

In-place upgrades only: During the installation process, the DBMS Server setup
asks whether all databases are to be upgraded; answer No. The install procedure
automatically upgrades the iidbdb. If the upgrade of iidbdb fails, see the
appendix “Troubleshooting Upgradedb Problems.”

After the iidbdb is upgraded, the DBMS Server setup attempts to upgrade imadb
and install Remote Command Server objects into imadb. Some versions of
upgradedb neglect to create imadb first, and you will get “Database does not
exist: imadb” errors. These will be corrected in the next step.

Upgrading to Versions That Require a Patch

UNIX
You can install Ingres service packs without having to install a base release of
Ingres first. If you are upgrading to an older Ingres version that requires an
overlay patch instead of a service pack, follow this procedure:

1. Run ingbuild. When asked whether you want to set up all the Ingres
components, respond No. Exit ingbuild.

2. Install the Ingres patch.

3. Run ingbuild again. Select Current, then SetupAll.

4. Follow the prompts to complete the Ingres setup.

Setup now uses the fixed version.

Step 23: Create imadb Database

Note: Perform this step only if you received “Database does not exist: imadb”
messages during the DBMS Setup phase of your Ingres install.

Create the imadb database.

Upgrading from 6.4 Using Unload/Reload

B–30 Migration Guide

As the installation owner, execute these commands:

UNIX

ingstart
cd $II_SYSTEM/ingres/vdba
createdb '-u$ingres' imadb –f nofeclients
sql '-u$ingres' imadb <makimau.sql
rmcmdgen
ingstop

Windows

ingstart
cd %II_SYSTEM%\ingres\vdba
createdb -u$ingres imadb –f nofeclients
sql -u$ingres imadb <makiman.sql
rmcmdgen
ingstop

As the makimau or makiman SQL scripts run, you see a series of messages such
as “E_US0AC1 'some-name' does not exist or is not owned by you.” These are
normal and can be ignored.

Step 24: Restore Site Modifications

Restore any site-specific files that you copied in Step 17 (see Step 17: Preserve Site
Modifications in this appendix).

Checkpoint Template If the checkpoint template file cktmpl.def has been modified, the modifications
may need to be carried forward into Ingres. The cktmpl.def from Ingres 6.4
cannot be used with Ingres, as the file format has changed. This means that you
must recreate the changes using the Ingres 6.4 cktmpl.def as a guide. See the
Ingres 6.4 Database Administrator’s Guide.

Archiver Exit Script If the archiver exit script acpexit was changed in Ingres 6.4, you must make the
changes to the Ingres template (acpexit.def), and then move that file to
$II_SYSTEM/ingres/files/acpexit.

Step 25: Configure Ingres

Run Configuration-By-Forms (CBF) and initially configure the Ingres installation.
Use the rundbms.opt and showrcp information from Ingres 6.4 as a guideline.
For information about CBF and the various tuning parameters, see the System
Administrator Guide.

For information on the correlation between 6.4 and Ingres parameter names, see
Corresponding Parameter Names in this appendix.

Derived parameters are recalculated when values they depend on are changed. If
derived parameters are set, they can be “protected” against change.

Upgrading from 6.4 Using Unload/Reload

Upgrading from Ingres 6.4 B–31

Ingres versions from 2.0 through 2.6 may calculate very large default lock and
resource limits parameters. Check the lock_limit and resource_limit settings, and
consider reducing these limits to the Ingres 6.4 settings.

On OS-thread platforms, do not turn on async_io; and do not declare the
II_NUM_SLAVES Ingres variable.

Ingres supports larger qef_sort_mem values than Ingres 6.4. Ingres may not need
as much qsf_memory as did Ingres 6.4. OS-thread platforms should not reduce
quantum_size, as it does not improve performance on those platforms.

Step 26: Set Up Ingres Net

Run netutil to create the vnode definitions for the remote installations. If
installation passwords are needed, you must run mkvalidpw. See the System
Administrator Guide or the Readme for your platform.

If there are NFS client-only installations that have not been set up, run ingmknfs
to set them up.

Step 27: Start Ingres

Run ingstart to start Ingres.

Step 28: Recreate Users, Groups, and Roles

Note: This step is required only for a clean-installation upgrade.

Users and Groups If your 6.4 installation has only a few Ingres users defined, you should use the
accessdb utility or the CREATE USER SQL statement to recreate those users in
the Ingres installation. As a guide, use the file users.out or refer to the 6.4
installation.

If you have many users, the following procedure recreates them in mass.

As the installation owner, change directory to your iidbdb unloaddb directory
where you stored the files from Step 11 (see Step 11: Save Users, Groups, and
Roles in this appendix). Run this SQL:
sql '-u$ingres' iidbdb
copy iiuser(name=c0comma,status=c0comma,default_group=c0nl)
from 'users.out'
\go
update iiuser
set default_priv = status, user_priv = status,
 flags_mask = case when default_group <> ' ' then 28 else 24 end
where user_priv = 0 and flags_mask = 0;

Upgrading from 6.4 Using Unload/Reload

B–32 Migration Guide

\go
copy iiusergroup(groupid=c0comma,groupmem=c0nl)
from 'groups.out'
\go
commit
\go
\quit

Windows
For Windows, omit the quotes from the sql command line.

Ingres has new user privileges that do not exist in 6.4. If you recreate users using
the above bulk load procedure, you should review the added users with
accessdb to make sure that all user privileges are set the way you want them. In
particular, review the definitions for any 6.4 “superusers.”

Ingres handles the “update system catalog” privilege differently than did 6.4.
You must explicitly grant this privilege to the Ingres user after you recreate it,
with a grant statement, as follows:
grant update_syscat on current installation to user-name

Roles If your 6.4 installation had roles defined, recreate them with the ADD ROLE SQL
statement. Use the file roles.out as a guide. Roles cannot be reliably bulk-loaded
from the 6.4 installation, so you must recreate them by hand. After you recreate
each role, issue the following SQL statement:
grant rolename to public; commit

This allows the role to be used in the same manner as in 6.4.

Step 29: Recreate Locations

Note: This step is required only for a clean-install upgrade.

Refer to each infodb output saved in Step 9 (see Step 9: [Each DB] Record
Database Information in this appendix). Create any location that is not a default
installation location (ii_database, ii_checkpoint, ii_journal, or ii_dump).

For more information about creating locations, see the Database Administrator
Guide.

Step 30: [Each DB] Recreate the Database

Before creating each database, refer to the infodb output saved in Step 9 (see Step
9: [Each DB] Record Database Information in this appendix). Look at the location
names for ROOT, JOURNAL, CHECKPOINT, and DUMP. If these are not
ii_database, ii_journal, ii_checkpoint, or ii_dump, you must specify the location
to createdb with the –d, -j, -c, or –b flags, respectively.

Upgrading from 6.4 Using Unload/Reload

Upgrading from Ingres 6.4 B–33

Also, refer to the database access information recorded in that step. If the
database access was “private,” you must use the –p flag for createdb.

If all the database locations are the default, and the database is public, you can
omit the flags on the createdb command line.

Recreate each user database, omitting the front-end catalogs. (The front-end
catalogs will be reloaded and upgraded in a later step.) Use the following
command:
createdb dbname flags -f nofeclients

Note: For a Distributed Option database, run createdb/star for the DDB. Do not
run createdb for the CDB.

Step 31: [Each DB] Extend the Database

Refer to the infodb output saved in Step 9 (see Step 9: [Each DB] Record Database
Information in this appendix). If the database was extended to data locations
other than the default location, run accessdb as the installation owner and extend
the newly-created databases to the same locations. The locations will already
exist; it is only necessary to extend the databases to use them.

If you prefer a non-interactive command line utility, you can use the extenddb
utility instead of accessdb.

Step 32: Recreate Database Privileges

As the installation owner, change to the iidbdb unloaddb directory, and refer to
the file dbaccess.out created in Step 10 (see Step 10: Record Database Privileges
in this appendix).

Start an iidbdb Terminal Monitor session:
sql iidbdb

For each database and user combination listed in dbaccess.out, issue the
statement:
grant access on database database-name to username; commit

Next, review the file dbprivs.out created in Step 10. Each row describes one or
more database privileges given to the user grantee-name. A Y or N in a privilege
column indicates the specific privilege. (A U in a column means “Unchanged.”)

For each row, issue the statement
grant privilege on database database-name to grantee-name;commit

Upgrading from 6.4 Using Unload/Reload

B–34 Migration Guide

If the privilege column is N, grant noprivilege instead of privilege.

When finished, use \quit to exit the iidbdb session.

If you have defined many privileges, or recreated many users, groups, or roles,
you should run sysmod on the iidbdb, which will accelerate query processing.
Issue the sysmod command, as follows:
sysmod iidbdb

Step 33: [Each DB] Fix FE Reload Script

Edit the file cp_ingre.in and locate the lines:
\include /ing64/ingres/files/iiud.scr
\include /ing64/ingres/files/iiud64.scr

Note: The directory path may differ.

Delete these lines and save the file. Because the database was not created with
front-end catalogs, it is not necessary to drop them.

Step 34: [Each DB] Reload the Database

Run reload.ing for each database. Redirect the reload to a log file so that it can be
checked for errors.

UNIX
Using the C shell:

reload.ing |& tee reload.log

Note: If using the Distributed Option, reload the CDB and all “real” local
databases before reloading the DDBs.

After the reload is complete, verify that the table ii_id has only one row. Type
isql <database>, and select * from ii_id. If more than one row is returned, delete
the row with the lowest object_id.

Step 35: [Each DB] Upgrade Front-end Catalogs

Run upgradefe on each database, which brings the front-end catalogs up to
Ingres level. Issue the following command:
upgradefe dbname INGRES

The word INGRES should appear in uppercase.

Corresponding Parameter Names

Upgrading from Ingres 6.4 B–35

Step 36: [Each DB] Reapply Optimizer Statistics

Regenerate optimization statistics. You can do this either by regenerating
statistics from scratch or by using the original statistics printed from the Ingres
6.4 installation earlier in this upgrade procedure (see Step 8: [Each DB] Print
Optimizer Statistics (Optional).

If there is sufficient time, we recommend that you regenerate the optimizer
statistics using the procedures of your application system. Ingres computes more
statistics than did 6.4.

If time is short, and if you printed the original statistics in Step 8, you can read
them back in with the –i option to optimizedb:
optimizedb dbname -i dbname.stats

Step 37: [Each DB including iidbdb] Checkpoint the Database

Checkpoint each database. If the database was journaled previously, use the +j
flag to turn on journaling.

To know which databases were journaled, see the infodb output from Step 9 (see
Step 9: [Each DB] Record Database Information in this appendix).

The iidbdb should always be journaled, regardless of whether it was journaled in
the 6.4 installation.

Step 38: Install Upgraded Applications

Install the Ingres versions of the applications. Then restore user logins and
resume normal operation.

Corresponding Parameter Names
The configuration system in Ingres 6.4 differs from that of subsequent releases.
This section discusses the Ingres 6.4 server parameters that correspond to Ingres
parameters. All corresponding Ingres parameters listed are found in the DBMS
Server component.

Ingres parameters that do not have any corresponding Ingres 6.4 parameters are
not listed.

Corresponding Parameter Names

B–36 Migration Guide

Parameters in 6.4 rundbms.opt File

Note: Parameters of type Cache are repeated for each cache page size.

Ingres 6.4 Parameter Ingres Parameter Type

active_sessions active_limit Derived

cache_name cache_name

connected_sessions connect_limit

cpu_statistics cpu_statistics Derived

cursors_per_session cursor_limit

database_count database_limit Derived

dblist database_list Databases

define define_address Derived

dmf.cache_size dmf_cache_size Cache, Derived

dmf.count_read_ahead dmf_group_count Cache, Derived

dmf.dbcache_size dmf_db_cache_size

dmf.flimit dmf_free_limit Cache, Derived

dmf.memory dmf_memory Cache, Derived

dmf.mlimit dmf_modify_limit Cache, Derived

dmf.scanfactor dmf_scan_factor Cache

dmf.size_read_ahead dmf_group_size Cache

dmf.tblcache_size dmf_tbl_cache_size

dmf.tcb_hash dmf_hash_size

dmf.wbend dmf_wb_end Cache, Derived

dmf.wbstart dmf_wb_start Cache, Derived

events event_limit

fast_commit fast_commit Derived

flatten query_flattening (ON)

image image_name

maximum_working_set unix_maximum_working_set

names name_service (ON)

noflatten query_flattening (OFF)

Corresponding Parameter Names

Upgrading from Ingres 6.4 B–37

Ingres 6.4 Parameter Ingres Parameter Type

nonames name_service (OFF)

opf.active opf_active_limit Derived

opf.aggregate_flatten qflatten_aggregate (ON) Derived

opf.complete opf_complete (ON)

opf.cpufactor opf_cpu_factor

opf.exactkey opf_exact_key

opf.memory opf_memory Derived

opf.noaggregate_flatten qflatten_aggregate (ON) Derived

opf.nocomplete opf_complete (OFF)

opf.nonkey opf_non_key

opf.rangekey opf_range_key

opf.repeatfactor opf_repeat_factor

opf.sortmax opf_sort_max

opf.timeoutfactor opf_timeout_factor

priority unix_priority

psf.memory psf_memory Derived

qef.qep_size qef_qep_mem

qef.sort_size qef_sort_mem

qsf.pool_size qsf_memory Derived

quantum quantum_size

rdf.max_tbls rdf_max_tbls

rdf.memory rdf_memory Derived

rdf.tbl_cols rdf_tbl_cols

rdf.tbl_idxs rdf_tbl_idxs

rule_depth rule_depth

scf.row_estimate scf_rows

server_class server_class

session_accounting session_accounting

shared_cache cache_sharing (ON)

sole_cache cache_sharing (OFF)

Corresponding Parameter Names

B–38 Migration Guide

Ingres 6.4 Parameter Ingres Parameter Type

sole_server sole_server Derived

stack_size stack_size

write_behind dmf_write_behind (see notes) Cache

Notes on Specific Parameters

Note the following:

■ The 6.4 QEF sorting algorithm is unsuited to large qef_sort_mem settings.

■ All recent Ingres versions use a different sort that does not degrade with
large qef_memory_settings. The 6.4 standard setting is much smaller than
the Ingres default.

■ Ingres 2.6 generally requires significantly less qsf_memory than Ingres 6.4
does, perhaps as little as half. After upgrading, start with the same
qsf_memory setting as Ingres 6.4, but monitor QSF memory usage with trace
point QS501 and tune qsf_memory appropriately.

■ The quantum_size parameter in an internal threads (slaves) installation is
often set to a small number (50 to 100) to improve responsiveness.
Quantum_size has a different meaning in an OS threads installation, where it
should not be set to less than 300, or excessive polling of the session
communications channel will occur. A quantum_size of 1000 is usually
appropriate when OS threads are in use.

■ The 6.4 write_behind parameter is a thread count. Starting with 2.5, the
dmf_write_behind parameter is simply ON or OFF, and the server
dynamically allocates threads. Prior to Ingres II 2.5, the write_behind
parameter means the same as it did in 6.4.

■ A stack_size of 64 KB is typical with 6.4. Recent Ingres versions use more
stack, so the stack size should be set to 128 KB (or more, if sporadic session
failures occur).

■ 6.4 VMS installations can have a few additional non-UNIX parameters,
which have the same or almost the same names in Ingres 2.6.

Locking and Logging System Parameters

These parameters are set with iistartup -init, or rcpconfig, in Ingres 6.4.

Ingres 6.4 Parameter Ingres Parameter Type

Log buffers in memory buffer_count Log

Corresponding Parameter Names

Upgrading from Ingres 6.4 B–39

Ingres 6.4 Parameter Ingres Parameter Type

Transactions in the logging system tx_limit Log, Derived

Databases in the logging system database_limit Log, Derived

Maximum C.P. interval for invoking the
archiver

archiver_interval Log, Derived

Block size of the log file block_size Log

Log-full limit full_limit Log

Percentage of log for consistency point cp_interval Log, Derived

Force-abort limit force_abort_limit Log, Derived

Size of the lock hash table hash_size Lock, Derived

Size of the resource hash table resource_hash Lock, Derived

Maximum number of locks in the locking
system

lock_limit Lock, Derived

Maximum number of lock lists list_limit Lock, Derived

Maximum number of locks per transaction per_tx_limit Lock

Notes on Specific Parameters

Note the following:

■ There is no 6.4 equivalent to the Ingres log_writer parameter. Although the
log_writer default is 1, it is usually advantageous to start your Ingres
installation with log_writer set to 4 or 5. If you are using dual logging,
double the setting.

■ The default rule for computing lock_limit (and the new parameter
resource_limit) tend to compute very high numbers—hundreds of
thousands, or more. You can allow more locks than you did in 6.4. As an
initial setting, a doubling of lock_limit is usually more than sufficient.

■ Ingres should usually start with a higher log buffer_count setting than did
6.4; if the 6.4 setting was less than 20, start with 20 buffers.

■ Configurator may compute a different archiver_interval than you used in 6.4.
Carry over the 6.4 setting.

Troubleshooting Upgradedb Problems B–1

Appendix

C
Troubleshooting Upgradedb
Problems

This appendix describes how to troubleshoot problems you may encounter when
using the upgradedb utility.

Troubleshooting Tips
The best way to avoid problems with the upgradedb utility is to upgrade to the
most recent service pack of Ingres, and to follow the upgrade steps carefully.

Note: If you are upgrading to Ingres II versions 2.0 or 2.5, make sure you install
the latest patch available for your platform before performing the upgradedb
step.

Here are problems that have occasionally occurred when upgrading:

■ The upgradedb utility starts to process, and then hangs with no error
indication.

This is probably caused by the Remote Command Server interfering with the
upgradedb process. Use the rmcmdstp command to stop the Remote
Command Server.

■ The following message occurs: “Product name has been made uninstallable
by an incompatible dictionary upgrade.”

This message is caused by extra or incorrect rows in the front-end catalog
ii_client_dep_mod. The rows may have been created by very old versions of
Ingres. You can ignore this message.

■ The following message occurs shortly after the upgradedb utility starts
processing a database: “E_SC0206 An internal error prevents further
processing of this query.”

This message is seen when upgradedb –all is used, and the database data
ROOT location is not the same as others processed in the same upgradedb
run. The errlog.log shows the message ”E_DM9004_BAD_FILE_OPEN”
referencing a filename: aaaaaaaa.cnf, shortly before the E_SC0206 message.

Troubleshooting Tips

B–2 Migration Guide

This message has occasionally been seen in various versions of upgradedb.
Simply rerun upgradedb for the one failed database, and continue the
upgrade.

If something else goes wrong with the upgradedb utility, contact Computer
Associates Technical Support for help. For problems with a single database,
technical support can assist you in restoring the database data files from your
system backup and resetting the database information in iidbdb so that you can
retry upgradedb. In the worst case, it may be necessary to restore the entire
installation from your system backup, fix the database problem, and redo the
upgrade.

Keywords D–1

Appendix

D Keywords

This appendix lists Ingres keywords and the contexts in which they are reserved.
You can use the list to avoid assigning object names that conflict with reserved
words.

Note: The keywords in the list do not necessarily correspond to supported
Ingres features. Some words are reserved for future or internal use, and to
provide backward compatibility.

Table Key
In the tables in this appendix, the column headings have the following meanings:

Non 6.4—Keywords not included in Ingres 6.4 keyword reserved lists

ISQL (Interactive SQL) —Keywords reserved by the DBMS

ESQL (Embedded SQL—Keywords reserved by the SQL preprocessors

IQUEL (Interactive QUEL)—Keywords reserved by the DBMS

EQUEL (Embedded QUEL)—Keywords reserved by the QUEL preprocessors

4GL—Keywords reserved in the context of SQL or QUEL in Ingres 4GL routines

Reserved Single Keywords

D–2 Migration Guide

Reserved Single Keywords
The following single keywords are reserved.

Note: The ESQL and EQUEL preprocessors also reserve forms statements.

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

abort * * * * * *

activate * *

add * * *

addform * *

after * * *

all * * * *

alter * *

and * * * *

any * * * * *

append * * *

array * *

as * * * * *

asc * *

at * * * * * *

authorization * *

avg * * * * *

avgu * * *

before * *

begin * * * * *

between * * *

breakdisplay * *

by * * * * * *

byref * * * *

call * * * *

Reserved Single Keywords

Keywords D–3

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

callframe * * *

callproc * * * *

cascade * * *

case * * * *

cast * *

check * * *

clear * * * *

clearrow * * * *

close * * *

coalesce * *

column * * * *

command * *

comment * *

commit * * *

committed * * * *

connect *

constraint * * * *

continue * *

copy * * * * * *

copy_from * *

copy_into * *

count * * * * *

countu * * *

create * * * * * *

current * *

current_user * * *

currval * * * *

cursor * *

cycle * * * *

Reserved Single Keywords

D–4 Migration Guide

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

datahandler * *

dbms_password * * *

declare * * * *

default * * * * *

define * * * *

delete * * * * * * *

deleterow * * * *

desc *

describe * * *

descriptor *

destroy * * *

direct * * *

disconnect *

display * * * *

distinct * * *

distribute * *

do * * *

down * *

drop * * *

else * * *

elseif * * *

enable * *

end * * * * * *

end-exec * *

enddata * *

enddisplay * *

endfor * * *

endforms * *

endif * * *

Reserved Single Keywords

Keywords D–5

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

endloop * * * * *

endrepeat * * *

endretrieve *

endselect *

endwhile * * *

escape * *

except * *

exclude * *

excluding * * * *

execute * * * *

exists * * *

exit * * *

fetch * *

field * *

finalize * *

first * * *

for * * * * *

foreign * * *

formdata * *

forminit * *

forms * *

from * * * * * *

full * * * *

get * *

getform * *

getoper * *

getrow * *

global * * * *

goto *

Reserved Single Keywords

D–6 Migration Guide

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

grant * * *

granted * * *

group * * *

having * * *

help * * *

help_forms * * *

help_frs * *

helpfile * * * *

identified * *

if * * *

iimessage * * *

iiprintf * * *

iiprompt * * *

iistatement * *

immediate * * * *

import * *

in * * * * *

include * *

increment * * * *

index * * * * * *

indicator *

ingres *

initial_user * * *

initialize * * * *

inittable * * * *

inquire_equel *

inquire_forms * * *

inquire_frs * *

inquire_ingres * * * * *

Reserved Single Keywords

Keywords D–7

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

inquire_sql * *

insert * * *

insertrow * * * *

integrity * * * *

intersect * *

into * * * * * *

is * * * * * *

isolation * * * *

join * * *

key * * * *

leave * * *

left * * *

level * * * * *

like * *

loadtable * * * *

local * *

max * * * * *

maxvalue * * * *

menuitem * *

message * * * * *

min * * * * *

minvalue * * * *

mode * * *

modify * * * * * *

module * *

move * *

natural * * *

next * * *

nextval * * * *

Reserved Single Keywords

D–8 Migration Guide

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

nocache * * * *

nocycle * * * *

noecho * * *

nomaxvalue * * * *

nominvalue * * * *

noorder * * * *

not * * * *

notrim * *

null * * * * *

nullif * *

of * * * * * *

on * * * * *

only * * * * * *

open * * *

option *

or * * * *

order * * * * * *

out * *

outer * * * *

param *

partition * *

permit * * * *

prepare * *

preserve * * *

primary * * *

print * * *

printscreen * * * *

privileges *

procedure * * * *

Reserved Single Keywords

Keywords D–9

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

prompt * * * *

public * *

purgetable * * * * *

putform * *

putoper * *

putrow * *

qualification * * *

raise * * *

range * * *

rawpct * * * *

read * * * *

redisplay * * * *

references * * * *

referencing * *

register * * * * * *

relocate * * * * * *

remove * * * * *

rename * *

repeat * * * * *

repeatable * * *

repeated * *

replace * * *

replicate * *

restart * * * *

restrict * * *

result * *

resume * * * *

retrieve * * *

return * * *

Reserved Single Keywords

D–10 Migration Guide

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

revoke * * *

right * * *

role * * *

rollback * * *

row * * *

rows * * *

run * * *

save * * * * * *

savepoint * * * * * *

schema * * *

screen * * * *

scroll * * * *

scrolldown * *

scrollup * *

section *

select * * *

serializable * * * *

session * * * *

session_user * * *

set * * * * * *

set_4gl * * *

set_equel *

set_forms * * *

set_frs * *

set_ingres * * * * *

set_sql * *

sleep * * * *

some * * *

sort * * *

Reserved Single Keywords

Keywords D–11

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

sql *

start * * * *

stop *

submenu * *

substring * *

sum * * * * *

sumu * * *

system * * *

system_
maintained

* * * * *

system_user * * *

table * *

tabledata * *

temporary * * *

then * * * *

to * * * * *

type * *

uncommitted * * * *

union * * *

unique * * * * * *

unloadtable * * * *

until * * * * * *

up * *

update * * * *

user * * *

using * *

validate * * * *

validrow * * * *

values * * *

Reserved Double Keywords

D–12 Migration Guide

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

view * * * *

when * * *

whenever *

where * * * * * *

while * *

with * * * * * *

work * *

write * * * *

Reserved Double Keywords
The following double keywords are reserved.

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

add privileges * *

after field * * *

alter default * * *

alter group * * *

alter location * * * *

alter profile * *

alter role * * *

alter security_audit * * * *

alter_sequence * * * *

alter table * * *

alter user * * * *

array of * *

base table structure *

before field * * *

Reserved Double Keywords

Keywords D–13

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

begin declare * *

begin exclude * *

begin transaction * * * * * *

by group * *

by role * * *

by user * * *

call on * *

call procedure * *

class of * *

clear array * *

close cursor * * *

comment on * * * *

connect to * *

copy table * *

create dbevent * * *

create domain * *

create group * *

create integrity * * *

create link * *

create location * * * *

create permit * * *

create procedure * *

create profile * * * *

create role * * *

create rule * * *

create security_alarm * * * *

create sequence * * * *

create synonym * * * *

create user * * * *

Reserved Double Keywords

D–14 Migration Guide

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

create view * * *

cross join * * * *

curr value * *

current installation * *

current value * * * *

define cursor *

declare cursor *

define integrity * * *

define link *

define location *

define permit * * *

define qry * * *

define query * *

define view * * *

delete cursor * *

describe form * *

destroy integrity * * *

destroy link *

destroy permit * * *

destroy table *

destroy view * *

direct connect * * * *

direct disconnect * * * *

direct execute * * *

disable security_audit * * * *

disconnect current * *

display submenu * * *

drop dbevent * * *

drop domain * *

Reserved Double Keywords

Keywords D–15

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

drop group * *

drop integrity * * *

drop link * * *

drop location * * * *

drop permit * * *

drop privileges * *

drop procedure * *

drop profile * * * *

drop role * * *

drop rule * * *

drop security_alarm * * * *

drop sequence * * * *

drop synonym * * * *

drop user * * * *

drop view * * *

each row * *

each statement * *

enable security_audit * * * *

end exclude * *

end transaction * * * * * *

exec sql * *

execute immediate * *

execute on * *

execute procedure * *

foreign key * * *

for deferred * *

for direct * *

for readonly * *

for retrieve * *

Reserved Double Keywords

D–16 Migration Guide

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

for update *

from group * *

from role * *

from user * *

full join * * *

full outer * * *

get attribute * *

get data * *

get dbevent * * *

get global * *

global temporary * *

help all * *

help comment * *

help integrity * *

help permit * *

help table * *

help view * *

identified by * *

inner join * * *

is null *

isolation level * * *

left join * * *

left outer * * *

modify table * *

next value * * * *

no cache * * * *

no cycle * * * *

no maxvalue * * * *

no minvalue * * * *

Reserved Double Keywords

Keywords D–17

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

no order * * *

not like * * * *

not null * *

on commit * * * *

on current * *

on database * *

on dbevent * * *

on location * * *

on procedure * *

on sequence * *

only where *

open cursor * * *

order by *

primary key * * *

procedure returning * * *

put data * *

raise dbevent * * *

raise error *

read only * *

read write * *

register dbevent * * *

register table * *

register view * * *

remote
system_password

* *

remote system_user * *

remove dbevent * * *

remove table * *

remove view * * *

Reserved Double Keywords

D–18 Migration Guide

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

replace cursor * * * *

result row * * * *

resume entry * * *

resume menu * * *

resume next * * *

resume nextfield * * *

resume previousfield * * *

retrieve cursor * * *

right join * * *

right outer * * *

run submenu * * *

send userevent * *

session group * *

session role * *

session user * *

set aggregate * * *

set attribute * *

set autocommit * * *

set cache * * *

set connection * * * *

set cpufactor * * *

set date_format * * *

set ddl_concurrency * *

set deadlock * * *

set decimal * * *

set flatten * * *

set global * *

set hash * * *

set io_trace * * *

Reserved Double Keywords

Keywords D–19

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

set j_freesz1 * * *

set j_freesz2 * * *

set j_freesz3 * * *

set j_freesz4 * * *

set j_sortbufsz * * *

set jcpufactor * *

set joinop * * *

set journaling * * *

set lock_trace * * *

set lockmode * * *

set log_trace * * *

set logdbevents * *

set logging * * *

set maxconnect * * *

set maxcost * * *

set maxcpu * * *

set maxidle * *

set maxio * *

set maxpage * * *

set maxquery * * *

set maxrow * *

set money_format * * *

set money_prec * * *

set nodeadlock * * *

set noflatten * * *

set nohash * *

set noio_trace * * *

set nojoinop * * *

set nojournaling * * *

Reserved Double Keywords

D–20 Migration Guide

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

set nolock_trace * * *

set nolog_trace * * *

set nologdbevents * *

set nologging * * *

set nomaxconnect * * *

set nomaxcost * * *

set nomaxcpu * * *

set nomaxidle * * *

set nomaxio * * *

set nomaxpage * * *

set nomaxquery * * *

set nomaxrow * * *

set noojflatten * *

set nooptimizeonly * * *

set noparallel * *

set noprintdbevents * *

set noprintqry * * *

set noprintrules * *

set noqep * * *

set norowlabel_visible * *

set norules * *

set nosql * *

set nostatistics * * *

set notrace * * *

set
nounicode_substitution

* *

set ojflatten * *

set optimizeonly * * *

set parallel * *

Reserved Double Keywords

Keywords D–21

 SQL QUEL

Keyword Non 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

set printdbevents * *

set printqry * * *

set printrules * *

set qbufsize * * *

set qep * * *

set query_size * * *

set random_seed * * *

set result_structure * * *

set ret_into * * *

set role * *

set rowlabel_visible * *

set rules *

set session * * *

set sortbufsize * * *

set sql * *

set statistics * * *

set trace * * *

set transaction * *

set
unicode_substitution

* *

set update_rowcount * * *

set work * *

system user * *

to group * *

to role * *

to user * * *

user authorization * *

with null *

with short_remark * *

Other Reserved Keywords

D–22 Migration Guide

Other Reserved Keywords
The following reserved keywords are only in the context of a WITH
PARTITION= clause.

automatic partition

hash range

list to

null values

on with

Features Introduced in Advantage Ingres 2.6 E–1

 Appendix

E
Features Introduced in Advantage
Ingres 2.6

Advantage Ingres 2.6 has several new enhancements including the following:

■ User-visible language enhancements

■ Increased maximum size of character data types

■ User-visible DBA enhancements

■ Internal performance enhancements

■ Locking system performance improvements

■ Logging system performance improvements

■ Buffer manager performance improvements

■ Operating system integration

■ Ingres ICE enhancements

■ ODBC enhancements

■ JDBC enhancements

■ Support for Unicode

■ New character sets to support Euro currency symbol

User-Visible Language Enhancements
Enhancements have been made to the internal performance that concern row
producing procedures.

Row Producing Procedures

This enhancement to the Advantage Ingres database procedure language
addresses the ability of Advantage Ingres to read and return to the caller
multiple rows from a select statement.

Increased Maximum Size of Character Data Types

E–2 Migration Guide

With server-executed database procedures, the program logic of the procedure is
executed entirely in the server address space. Multiple SQL DML requests are
executed in a single invocation of the procedure, with only one interaction with
the client application. The ability to process and return multiple “rows” of some
composite data types with a single call to a server-resident database procedure
adds to the potential for improved performance of an application.

In a typical computing environment with applications executing on a variety of
computers throughout a network, this approach can significantly reduce the
footprint of the client application and the traffic across the network.

SUBSTRING Function

The ANSI compliant SUBSTRING function has been added to the SQL syntax.
The SUBSTRING function is often easier to use than combinations of LEFT and
SHIFT functions that Ingres traditionally supported. The syntax is:

substring(string-expr from start-column for length)

and the for length clause is optional.

New Aggregate Functions

Additional aggregate functions for statistical analysis have been added:

■ The function corr computes a correlation coefficient

■ Functions covar_samp and covar_pop compute covariance

■ A collection of regr_xx functions generate regression analysis results

For details, see the SQL Reference Guide.

Increased Maximum Size of Character Data Types
Prior to Advantage Ingres 2.6, character data types were limited to a maximum
size of 2000 bytes; this restriction was imposed when the maximum size of a row
was limited to 2 KB. This limit is increased to 32000 bytes, the maximum row size
supported in Advantage Ingres 2.6.

User-Visible DBA Enhancements

Features Introduced in Advantage Ingres 2.6 E–3

User-Visible DBA Enhancements
Enhancements have been made to internal performance that concern auditdb
utility, copydb utility, raw location support, and GatherWrite threads.

Usermod Utility

Advantage Ingres now includes a usermod utility that allows users to run the
modify commands on user tables. Like sysmod, which modifies system catalogs,
this utility is useful for maintaining user tables on a regular basis.

Running this utility regularly, or when the table has excess overflow pages,
improves performance of user applications.

Auditdb Utility

Various enhancements to the auditdb utility required by Journal Analyzer are
included:

■ Specification of fully qualified table names.

■ Correct formatting of the output for -aborted_transaction when used with -b
and -e flags.

■ Corrected -aborted_transaction flag, allowing auditdb to write correct format
for BT and ET records.

■ Savepoint information in the auditdb output. This is achieved by printing
out the abortsave record, which contains the LSN of the aborted savepoint.

■ The order of output for lsn low/high fields for the ASCII output of auditdb,
allowing the high lsn to be printed before low LSN.

■ Two new auditdb options: -start_lsn=<LSN> -end_lsn=<LSN> for non -all
cases.

For the syntax of the auditdb command, see the Command Reference Guide.

Copydb Utility

The copydb utility is modified to include several options and flags that modify
the copy.in and copy.out scripts based on user requirements. The user can
specify the order in which the copy and modify statements are written to the
copy.in script, for example, whether to copy the data into the tables and then run
a modify statement or the other way around. Other examples include the ability
to remove hard-coded paths to the copy scripts, exclusion of location names, and
exclusion of user-specific permissions such as grant statements.

User-Visible DBA Enhancements

E–4 Migration Guide

Raw Location Support

Advantage Ingres 2.6 adds initial support for raw data locations on UNIX
platforms. Raw data locations provide dramatic performance improvements over
cooked locations. In this release, only one table may occupy any given raw
location. Many raw locations can exist on a single raw disk slice.

GatherWrite Threads

A new internal thread type, GatherWrite, is used by the Advantage Ingres buffer
manager during operations that require the flushing of multiple buffers from the
cache such as write behind, consistency points, and table purges. This feature is
only available on platforms that offer writev() support. Consult the appropriate
Readme file to determine whether this feature is supported on your platform.

This feature is enabled on a per-server basis using the gather_write parameter in
Configuration-By-Forms. The default setting is ON.

XML Import/Export Utility

XML is as a cross-platform, software- and hardware-independent tool for
transmitting information. The XML import/export utility imports and exports
XML data from Ingres tables to and from XML files. For the syntax of the XML
import/export utility, xmlimport, see the Command Reference Guide.

Journal Analyzer

The Journal Analyzer is a powerful graphical tool that provides an interface to
the journal files. You can use the Journal Analyzer to recover data from the
journals and to apply journaled transactions to other databases, both local and
remote. For information on the Journal Analyzer utility, see the System
Administrator Guide.

Import Assistant

The Import Assistant is a wizard that simplifies the task of importing data from a
standard file format to an Advantage Ingres database. For information on the
Import Assistant utility, see the online help.

User-Visible DBA Enhancements

Features Introduced in Advantage Ingres 2.6 E–5

Automated Creation of Location Directories

Before Version 2.6, the Ingres DBA had to manually create the directories for
alternate locations as prescribed in the Database Administrator Guide. This step
had to be performed prior to creating a Location with ACCESSDB, or could be
deferred if Locations were created using EXEC SQL CREATE LOCATION
syntax. To circumvent directory permissions problems, ACCESSDB had to be
run by the Ingres user whenever Locations were created, altered, or extended.

This process is clarified and simplified in Advantage Ingres 2.6 with the
following changes:

■ The Ingres server performs all manipulations of Location directories. This
resolves the permissions problems of earlier releases and allows any
ACCESSDB user with the “maintain_locations” privilege to create, alter, or
extend Locations.

■ The server automatically creates Location directories when a
CREATE/ALTER LOCATION statement is executed, whether by
ACCESSDB or user-invoked SQL. Because only missing directories are
created, the DBA retains the ability to manually create as much, or all, of the
Location path as wanted before creating the Location.

Using the example from the section Creating an Area in UNIX in the Database
Administrator Guide, the following directories will be verified or created
automatically during the execution of:
CREATE LOCATION new_loc WITH AREA='/otherplace/new_area', USAGE=(DATABASE)

Perms Directory

 /otherplace

755 /otherplace/new_area

755 /otherplace/new_area/ingres

700 /otherplace/new_area/ingres/data

777 /otherplace/new_area/ingres/data/default

Note the following:

■ Permissions are not changed for extant directories.

■ The top-level directory “/otherplace” must exist and will not be created by
the server.

■ Raw location directories (UNIX only) cannot be automatically created and
must be made with the MKRAWAREA utility, which must be run by “root.”
The Locations may be created prior to MKRAWAREA but a warning will be
issued noting that the utility must be run prior to their use.

Internal Performance Enhancements

E–6 Migration Guide

Remote Command Server Enhancements

 Users commonly encounter problems running utilities that require exclusive
access to the iidbdb database because the Remote Command Server process
(rmcmd) keeps a session open on this database. To counter this problem, rmcmd
now attaches to imadb instead of iidbdb; imadb is a system database that
contains no historical data; it is rarely backed up and requires little or no
maintenance.

Microsoft Transaction Server Support

Support for tightly coupled XA threads and shared lock lists is now available to
support Microsoft Transaction Server, using the ODBC 3.5 driver.

Concurrent Rollback

The concurrent recovery of multiple transactions is now possible.

Internal Performance Enhancements
Enhancements have been made to the internal performance that concern
aggregate sort nodes, composite histograms, and optimizer support for hash
joins.

Aggregate Sort Nodes

Improvements to aggregate handling allows Advantage Ingres to better support
data-mining products such as CleverPath OLAP, which make extensive use of
data aggregation.

Previous versions required a sort before doing grouping and aggregation.
Advantage Ingres 2.6 now does grouping with hash bucketing instead of sorting.
Hash grouping is usually faster than sorting. Other internal refinements
streamline the calculation of common aggregates, reducing the amount of CPU
time needed.

Locking System Performance Improvements

Features Introduced in Advantage Ingres 2.6 E–7

Composite Histograms

The composite histograms enhancement allows the creation of composite or
multi-column histograms that model much more accurately the dependence of
the values of one column on another, and lead to far better selectivity estimates
and, ultimately, to better query plans.

Optimizer Support for Hash Joins

Hash joins have been implemented in Advantage Ingres 2.6. A hash join is one in
which a hash table is built with the rows of one of the join sources by hashing on
the key columns of the join. The rows of the other join source are then read and
hashed into the table on their key columns. The hashing of the second set of rows
quickly identifies pairs of joining rows. This technique requires no index
structures on the join columns (as does KEY join), nor does it require sorting on
the join columns (as does merge join).

Locking System Performance Improvements
A number of improvements have been made to the locking system to eliminate
or minimize bottlenecks identified when running various performances tests.

Preallocated RSB/LKBs

Each resource RSB now has an embedded a lock block (LKB), removing the need
for a separate, contentious LKB allocation every time a new resource is allocated.

An LLB stash of LKBs is also maintained, similar to the RSB stash.

When an RSB or LKB is freed, it is returned to the LLB’s stash; when the lock list
itself is freed, all stashed RSB/LKBs are returned to the free pool.

Miscellaneous Locking System Improvements

The following miscellaneous locking system improvements are included in
Advantage Ingres 2.6:

■ The number of RSB waiters and converters are now maintained in the RSB.

■ The deadlock wait-for graph lock (lkd_dlock_lock) does not need to be held
if the RSB has neither waiters nor converters.

Logging System Performance Improvements

E–8 Migration Guide

■ The LKREQ built in the stack does not need to be copied to the LKB
indiscriminately.

■ When a lock request is blocked, the blocker’s identity is now saved in the
LKREQ and formatted in SYS_ERR only when the request fails.

Logging System Performance Improvements
A number of improvements to the logging system eliminate or at least minimize
bottlenecks identified when running various performance tests. These changes
include elimination of contentious current_llb_mutex, faster log forces through
forcing only what needs forcing, and improved concurrency potential (fast
resume).

Buffer Manager Performance Improvements
A number of improvements have been made to the buffer manager to eliminate
or minimize bottlenecks identified when running various performance tests.
These include:

■ Removal of stats for fixed priority pages. In Advantage Ingres 2.6, stats are
tracked by buffer page type for better analysis of the BM’s LRU algorithm.

■ Raising a buffer’s priority each time it is fixed; previously it was raised only
when newly fixed.

Operating System Integration
Enhancements have been made to the internal performance that concern 64-bit
operating systems and operating system thread implementation on Linux.

64-Bit Operating Systems

Now that Microsoft, Sun, HP, and Linux vendors have produced 64-bit versions
of their operating systems, we are providing a 64-bit build of Advantage Ingres
on these platforms. Every effort is made to exploit large memory and files in
these 64-bit environments.

Ingres ICE Enhancements

Features Introduced in Advantage Ingres 2.6 E–9

Operating System Thread Implementation on Linux

Advantage Ingres 2.6 provides support for operating system threads in Linux
environments including Intel, Alpha, S/390, and IA64. Operating system threads
perform better in most circumstances than the internal Advantage Ingres
threading model.

Ingres ICE Enhancements
Ingres/ICE development environment and setup and configuration are
addressed in Advantage Ingres 2.6 through integration with an existing Web
application development environment.

Development Environment

The ICE macro DTD can be used with an XML-aware editor to provide a
development environment for Ingres/ICE application development. A converter
has been added to take new macro syntax into the old macro syntax during page
registration.

ODBC Enhancements
The ODBC driver has been updated to Version 3.5.

Supported Functions
The Advantage Ingres ODBC driver supports all level one functions, as well as
the following level two functions:

■ SQLExtendedFetch (through Microsoft Cursor Library only)

■ SQLForeignKeys

■ SQLMoreResults

■ SQLNumParam

■ SQLPrimaryKeys

■ SQLProcedureColumns

■ SQLProcedures

■ SQLSetPos (through Microsoft Cursor Library only)

JDBC Enhancements

E–10 Migration Guide

Unavailable Features
The Advantage Ingres ODBC driver does not provide the following features as of
Release 2.6:

■ Executing functions asynchronously

■ Translation DLL

■ Support for Advantage Ingres SQL COPY TABLE command

■ Support for Advantage Ingres SQL SAVEPOINT command

JDBC Enhancements
The following JDBC 2.0 extensions have been added to Advantage Ingres:

■ Compatibility with GA release (protocol levels)

■ Execution in JDK 1.1 environment due to a new driver

■ Batch processing

■ javax—two-phase commit

■ javax—client connection pooling

■ Updateable result sets

The following are new features:

■ Support for Advantage Ingres intervals

■ Coalescing statement IDs

■ Utilization of VNODE passwords

■ Local connections without passwords

■ Support for procedure table parameters

■ Support for row producing procedure

Support for Unicode
This release contains the first phase of Advantage Ingres support for Unicode;
further Unicode support will be added in future releases.

New Character Sets to Support Euro Currency Symbol

Features Introduced in Advantage Ingres 2.6 E–11

In this release, the DBMS supports three new data types:

■ nchar

■ nvarchar

■ long nvarchar

These data types store character data using two bytes for each character.
Collation of these data types uses the standard collation algorithm as defined by
the Unicode organization, and the data types can be used in indexes and
database statistics.

The native two-byte (UCS2) format is supported and maintained through the
entire process, from the front-end application, through the DBMS, to the data
representation on disk.

The embedded SQL preprocessor for C and C++ supports declaration of wchar_t
variables, which are assumed to contain multi-byte Unicode character strings.

OpenAPI version 3 was added to indicate support for these new data types.

VDBA also supports the new data types.

Support for the ODBC and JDBC drivers is present through their normal
Unicode interfaces.

These new data types are not supported in any of the character-based tools or
any of the terminal monitors.

This release does not support coercion between Unicode data types and non-
Unicode data types such as char and varchar.

New Character Sets to Support Euro Currency Symbol
Two new character sets that contain the Euro currency sign (€, Unicode U+20AC)
are added: IS885915 and WIN1252.

To set the money format to the Euro currency symbol you must issue the
following command:
ingsetenv II_MONEY_FORMAT L:€

Alternatively, you can set this value in the Advantage Ingres Visual Manager
(IVM).

New Character Sets to Support Euro Currency Symbol

E–12 Migration Guide

Windows
WIN1252 corresponds to Windows code page 1252 Latin 1. This is the common
character set of most American and Western European Windows PCs, and
includes the Euro sign. Users wishing to use the Euro symbol in a Windows GUI
environment need to select the WIN1252 character set at installation time. To set
this code page in a Windows command prompt environment, you must issue the
following Windows command:
chcp 1252

The default font in a Windows command prompt does not provide support for
the Euro currency symbol. For a workaround, set the font to Lucida Console. The
Lucida Console font has moved the line drawing characters, used in Advantage
Ingres forms, into an area not accessible to Advantage Ingres binaries, so we
have provided rudimentary line drawing in the IBMPCD terminal entry. To set
this terminal type, you must either issue the following command:
ingsetenv TERM_INGRES IBMPCD

or set TERM_INGRES through IVM or specify this terminal type at install time.

UNIX
IS885915 corresponds to the ISO 8859-15 Latin 9-character set that is almost
identical to the ISO 8859-1 Latin 1 set, except for eight characters; chief among
them is the Euro currency sign (€, Unicode U+20AC).

If you have an existing installation and would like to change the character set, be
aware that this is not typically supported because the new character set could
display existing characters in your databases incorrectly. However, since the ISO
8859-15 only has eight characters that are different from ISO 8859-1, if you can
verify that none of the eight characters are already present in your databases,
you could safely change the set (by changing II_CHARSETxx).

The following table details these differences and provides the corresponding
Unicode character names:

Hex ISO 8859-1 ISO 8859-15

A4 ◘ Currency symbol € Euro sign

A6 ¦ Broken bar Š Latin capital letter with caron

A8 ¨ Diaeresis Š Latin small letter with caron

B4 ′ Acute accent Ž Latin capital letter Z with caron

B8  Cedilla Ž Latin small letter Z with caron

BC ¼ Vulgar fraction one quarter Œ Latin capital ligature OE

New Character Sets to Support Euro Currency Symbol

Features Introduced in Advantage Ingres 2.6 E–13

Hex ISO 8859-1 ISO 8859-15

BD ½ Vulgar fraction one half Œ Latin small ligature oe

BE ¾ Vulgar fraction three
quarters

Ϋ Latin capital letter Y with
diaeresis

Differences Between ISO 8859-1 and ISO 8859-15 Character Sets

Features Introduced in Ingres II 2.5 F–1

Appendix

F Features Introduced in Ingres II 2.5

This appendix describes the features and enhancements introduced in Ingres II
2.5, including:

■ Sort enhancements

■ ANSI/ISO constraint enhancements

■ Large cache support

■ Dynamic Write Behind threads

■ Partitioned transaction log file

■ Optimizedb enhancements

■ Read-only database support

■ New SQL functionality

■ Extended date support

■ Large file support

■ Large catalogs

■ Row locking for system catalogs

■ Update mode locking

■ Query optimization enhancements

■ Ingres Star features

■ Ingres Net features

■ Ingres ICE features

■ Visual DBA features

■ Replicator enhancements

■ OpenAPI enhancements

Sort Enhancements

F–2 Migration Guide

Sort Enhancements
Changes were made to improve the performance of both the in-memory (QEF)
sort and disk (DMF) sort of Ingres II.

QEF Sort Enhancements

QEF was improved by fine-tuning the sort algorithm, resulting in fewer
comparisons between sort rows. The sort algorithm is a major consumer of CPU
time in a sort. QEF was also improved with a change that results in the rows
being partially sorted as they arrive in the sort.

This change introduces two distinct benefits:

■ Duplicate rows are detected and discarded more quickly from duplicate
removal sorts (as required by “select distinct...”). This in turn increases the
number of rows that can be processed in memory for a duplicates removal
sort, avoiding more expensive disk sorts in many instances.

■ The first rows in the sort sequence can be returned before the remaining
rows are completely sorted. Tests show that the first sorted row is available
with as few as 20% of the overall comparisons required to complete the sort.
This means that browsing or scrolling applications see the first set of rows in
less time than before.

DMF Sort Enhancements

The first set of DMF sort enhancements also involve fine-tuning of the sort
algorithms, which should result in a 5 to 10 percent reduction in CPU time of
typical sorts. As with the QEF sort, duplicate rows are detected and discarded
sooner in duplicates removal sorts. This should result in smaller disk work files
and faster overall sort performance.

Prior to Release 2.5, the entire result of a DMF sort was spooled to an internal
temporary table before the sorted rows were returned to the caller. In Ingres II
2.5, the temporary table has been eliminated and the rows are returned directly
from the sort structures to the caller. This has the same effect as the early return
of sorted rows described above for the QEF sort. That is, the first rows should be
returned much sooner than they were in previous releases.

The final DMF sort enhancement is the introduction of a “parallel sort”
technique. Sorts that exceed a user-configurable threshold spawn additional
threads. The sort is split up and its rows delivered to the sub-threads for sorting.
The sorted subsets of the rows are then delivered back to the parent thread
executing the query, where they are merged to form a single sorted stream of
rows.

ANSI/ISO Constraint Enhancements

Features Introduced in Ingres II 2.5 F–3

On multi-CPU machines, this results in a significant reduction in the elapsed
time required to sort (between 25 to 50 percent in testing). Even single CPU
machines benefit somewhat, because sort I/O and sort computation can be
overlapped. An added benefit to the parallel sort technique is that it is
encapsulated within the DMF sort. This sort is used for the execution of queries
with sorting requirements (such as for order by, group by, and distinct requests,
or for implementing certain join algorithms). However, it is also used to sort
rows for index creation or update in modify, create index, and copy operations.
All users of the DMF sort derive the performance benefit of the parallel sort.

Parallel Sort Techniques

The “parallel sort” technique outlined above is used to sort rows for parallel
index creation, greatly reducing the time taken for index creation in multi-CPU
environments.

ANSI/ISO Constraint Enhancements
Ingres referential and unique/primary key constraints result in the creation of
indexes “under-the-covers” to improve the performance of the constraint
enforcement mechanisms. Prior to Release 2.5, these indexes were plain B-tree
indexes stored in the default location of the database. However, B-tree is not
always the best choice (for example, hash is better for many unique key
applications), and use of the default location can degrade performance if many
large indexes are created.

Ingres II 2.5 solves these and other problems by including a “with” clause for
constraint definition. The “with” clause allows the overriding of default index
options with anything normally coded in an index creation “with” clause. For
example, the index structure and location, as well as fillfactor and other index
options can be explicitly specified for each constraint. The “with” clause applies
to column and table constraints defined with both the create and alter table
statements. A unique/primary key constraint can be generated to use the base
table structure for its enforcement rather than a separate secondary index.

Ingres II 2.5 also introduces the ANSI/ISO notion of referential actions for the
definition of referential (foreign key) constraints. In releases prior to Ingres II 2.5,
the attempt to delete a referenced row for which matching referencing rows exist,
or to update the primary key of a referenced row to some other value while
matching referencing rows still exist for the old value, was met with an error and
the request was aborted. Either operation had to be preceded by a delete of the
matching referencing rows or an update of the foreign keys to some value that
exists in another referenced row.

Large Cache Support

F–4 Migration Guide

Ingres II 2.5 allows the definition of referential actions for each referential
constraint, which defines alternative actions to be taken in the circumstances
defined above. A separate action can be defined for both the delete case (deletion
of a referenced row with matching referencing rows) and the update case
(updating the key of a referenced row with matching referencing rows). The
options include cascade, in which case the delete or update is cascaded to the
matching referencing rows (so that the referencing rows are also deleted or
updated to the same value), and set null, in which case the foreign key of the
matching referencing rows is set to null. These actions permit a more complete
definition of the semantics of the referential relationship and allow the
application to execute more efficiently.

Large Cache Support
In Ingres II 2.5, the total number of pages in all caches has been revised from an
un-enforced limit of 65536 to 2**32-1. Ingres II 2.5 supports a 4 GB cache.

In previous releases, when those pages belonging to a specific table needed to be
located, the buffer manager sequentially searched every buffer in every cache to
find them. Even in installations with small caches, this was an expensive
operation, especially in those frequent instances in which there were no table-
pages in any cache. This operation occurred, for example, when a table's TCB
was about to be released, typically when all referencing transactions had no
immediate need to use the table. Delays caused by this operation could show up
in unexpected situations, such as the use of statement level rules.

In Ingres II 2.5, a cross-cache table hash queue has been added to the buffer
manager to which pages are added as they are faulted in and removed when
they are tossed. Thus, when the need to know a table's pages arises, a hash on the
table's database ID and table ID is made and that list searched for matching
pages. This change results in a significant decrease in the number of cache pages
visited and is most dramatic in installations configured with very large or
multiple caches.

Dynamic Write Behind Threads

Features Introduced in Ingres II 2.5 F–5

Dynamic Write Behind Threads
In releases prior to Ingres II 2.5, a fixed number of Write Behind threads were
configured in each server in an installation and initiated when the server started.
These threads served all caches and were awakened when the number of
modified pages in any cache exceeded a predefined threshold. In a shared cache
environment, all Write Behind threads in all servers were simultaneously
activated when this threshold was reached. This led to a “thundering herd”
phenomenon in which n Write Behind threads concurrently pounded through
the caches, competing for modified pages to flush.

The optimum number of Write Behind threads is the minimum number required
to:

■ Maintain the modified buffer count below the Write Behind start threshold

■ Supply sufficient free pages to avoid synchronous writes.

The optimum number of Write Behind threads varies with the instantaneous
demand for free pages in a particular cache; it always begins at one when the
threshold is first breached and a Write Behind event signaled. In Ingres II 2.5, if
the single Write Behind thread is unable to keep up with the demand, additional
Write Behind threads are created until either equilibrium is achieved or the
upper limit on thread numbers is reached. If better than equilibrium is achieved
(more modified pages are being freed than are in demand), the excess Write
Behind threads terminate one-by-one, while the remaining threads continue to
monitor the free buffer demand to achieve the write-behind end threshold.

Ingres II 2.5 introduces cache-specific Write Behind threads, resulting in
increased concurrency and eliminating the chance of free page starvation.

Partitioned Transaction Log File
The structure of the log file in Ingres II 2.5 is changed from a single file to 1-16
logically striped files of equal size. Properly configured, partitioning in this
manner encourages better log performance by spreading disk contention across
multiple disks instead of concentrating it on a single device. Ingres system
administration is made simpler, as the transaction log file can be expanded by
adding another partition, instead of resizing an existing file or partition. The full
log file paths are now defined through Configuration Manager or CBF rather
than through the symbol table.

Optimizer and Optimizedb Enhancements

F–6 Migration Guide

Optimizer and Optimizedb Enhancements
A variety of enhancements have been made to optimizedb.

The flag -zlr causes optimizedb to retain the original repetition factor when
rebuilding an existing histogram. This is useful when a histogram (and its
repetition factor) is built once by reading the whole table, then updated later
using sampling (which can produce inaccurate repetition factors).

A minor bug was fixed to allow the “l” flag to request an exclusive lock on the
database during optimizedb processing (just as for other command line utilities).

The current limit of 1000 parameters coded in a separate file using the -zf
parameter has been lifted. There is now no limit to the number of such
parameters.

An -o filename option (similar to that in statdump) has been added to
optimizedb. It creates a statdump-style output file, which can then be input back
to optimizedb with the -i filename option. But more importantly, it does not
update the catalog iistatistics and iihistogram tables. This allows a busy shop to
construct histograms at anytime, with no worry about update conflicts. Then at a
convenient later time, optimizedb can be run with the -i option to add the
histograms to the catalog.

In addition to the flag enhancements, an enhancement has been introduced to
allow more accurate histograms to be built on columns with significant skew in
their value sets. Specifically, a column with many distinct values, which would
generate an inexact histogram, now produces exact cells for values that occur
significantly more than the average. This permits much more accurate estimates
in the compilation of queries with restrictions on such columns, and, therefore,
better query plans.

The query compiler has been enhanced to compile more efficient strategies for
complex queries involving aggregate views and unions.

Read-only Database Support
Ingres II 2.5 provides the ability to distribute a read-only database on a CD-ROM
or other read-only media.

Example For example, to create a read-only database called mydatabase on UNIX:

1. Log in as the installation owner.

2. Change location to the staging directory:
cd /stagingarea

New SQL Functionality

Features Introduced in Ingres II 2.5 F–7

3. Create directory and subdirectories:
mkdir ingres

mkdir ingres/data

mkdir ingres/data/default

4. Place appropriate permissions:
chmod 755 ingres

chmod 700 ingres/data

chmod 777 ingres/data/default

5. Change location to the database files:
cd /install/inst1/ingres/data/default

6. Copy the database directory and its subdirectories to the new area:
cp -r mydatabase /stagingarea/ingres/data/default/

7. Copy the directory structure to the CD-ROM or other device:
cp -r ingres/data/default/mydatabase /cdrom

8. Create a new database location using the create location statement or using
the accessdb utility:
create location cdromloc with area=/cdrom, usage=(database);

9. Use the createdb command to access the read-only database in the
installation:
createdb -r cdromloc mydatabase

New SQL Functionality
New SQL operations have been added, bringing Ingres SQL closer to the SQL
standards. Enhancements have been made to the internal performance that
concern bit-wise operator support and miscellaneous functions.

Order By/Group By Expression

The ORDER BY and GROUP BY statements now allow an expression instead of
being limited to column names. ORDER BY can also reference a column name or
expression that is not part of the select result list.

New SQL Functionality

F–8 Migration Guide

CASE Expression

An ANSI SQL ‘92 compliant CASE expression has been added. The CASE
expression allows if-then-else testing anywhere that an expression is allowed.

There are two syntax forms. The most general CASE expression is:

case when boolean-expression then expression
 when boolean-expression then expression
 ...
 else otherwise-expression
end

Each boolean-expression is evaluated in turn, and if TRUE, the corresponding then
expression is the CASE result. If all the boolean-expressions are of the form expr1 =
expr2, a shorthand form can be used:

case expr1 when expr2 then expression
 when expr3 then expression
 ...
 else otherwise-expression
end

Parallel Index Creation

A new variation of the CREATE INDEX statement allows the user to create
multiple secondary indexes with a single pass through the base table. After the
required base table columns are extracted, the indexes are created in parallel,
each one using an independent worker thread. For additional performance, any
necessary sorting is performed using the new parallel sort capability.

The new syntax is:

create index (index-spec), (index-spec), ...

where an index-spec looks similar to the original CREATE INDEX statement:

(index-name on base-table (column-list) with with-clause)

SELECT Enhancement

The SELECT statement now allows the first n clause in the result list. This clause
limits the result returned to the user to the first N rows.

New SQL Functionality

Features Introduced in Ingres II 2.5 F–9

Bit-wise Operator Support

The following functions have been added to Ingres II 2.5 to provide support for
bit-wise operations:

bit_add—Logical “add” of two byte operands

bit_and—Logical “and” of two byte operands

bit_not—Logical “not” of two byte operands

bit_or—Logical “or” of two byte operands

bit_xor—Logical “exclusive or” of two byte operands

For all of these bit functions, all operations proceed right to left. The shorter of
two operands is padded with hex zeroes on the left. The result is a byte field
equal in size to the longer operand.

Aggregate Functions

New aggregate functions have been added:

■ stddev_samp

■ stddev_pop

■ var_samp

■ var_pop

The _pop forms divide by group size, the _samp forms divide by group size
minus one.

Miscellaneous Functions

The following miscellaneous functions have been added to Ingres II 2.5:

intextract—Extract the number at the given location.

ii_ipaddr—Convert an IP address to a byte 4.

random, randomf—Generate random integer or float8 values

power, ln—ANSI compliant synonyms for ** and log functions.

Several synonyms have been added to existing Ingres data types (such as
character long object and clob for long varchar and binary long object and blob
for long byte).

Extended Date Support

F–10 Migration Guide

Extended Date Support
Ingres II 2.5 allows users to insert dates in the range 01-Jan-0001 to 31-Dec-9999.

Large File Support
A major enhancement to Ingres II 2.5 on operating systems that support 64-bit
file systems is the ability to support file sizes greater than 2 GB. This means that
larger table, dump, work, journal, and checkpoint files can be accommodated in
a single location. It also removes the 2 GB limit on the size of the transaction log
file.

Large Catalogs
In this release, system catalogs can use pages larger than 2 KB. As a result, the
user does not have to configure a 2 KB cache size in the DBMS for system
catalogs.

Row Locking for System Catalogs
For improved concurrency, the Ingres II 2.5 DBMS automatically uses row
locking on system catalogs when catalogs are created using pages larger than
2 KB. This feature is keyed from the system default page size, which is
configurable through Configuration-By-Forms or Configuration Manager.
Createdb creates a database with system catalogs that have the default page size.
Running sysmod on an existing database, however, does not automatically
convert the system catalogs to use the default page size. The user must use the
“with page_size” keyword to achieve this.

Update Mode Locking

Features Introduced in Ingres II 2.5 F–11

Update Mode Locking
Prior to Ingres II 2.5, when the DBMS fetched a row for a cursor mode update, it
would acquire an exclusive lock. In serializable mode, this lock would be held
until the end of transaction, even when the row was not updated. In this release,
the Ingres DBMS acquires an update mode lock for the row that is a candidate
for update. If the row is actually updated, the update mode lock is converted to
logical exclusive lock; otherwise, it is converted down to shared lock or released,
depending on the current isolation level. Update mode locking is now the default
for cursor updates.

Value Locking for Serializable Transaction with Equal Predicate

Prior to Ingres II 2.5, the Ingres DBMS would hold a page lock on the leaf pages
on B-tree tables for a serializable update transaction, even when using row
locking. This was done to prevent other users from inserting a row in the
qualified range to be updated. In Ingres II 2.5, the DBMS uses a value locking
protocol for serializable transactions with an equal predicate, thereby allowing
better concurrency.

Query Optimization and Execution Enhancements
Ingres II 2.5 incorporates a variety of internal enhancements to the compilation
and execution of queries.

Ingres Star Features
In Ingres II 2.5 the Ingres Star Server now contains support for the 1Pcplus
commit protocol, which allows a single site that is not capable of supporting two-
phase commit protocols to participate in a multi-site update within Star. This
change allows a single database that is being accessed through an Ingres
Enterprise Access gateway that does not support the SQL prepare statement to
participate in a multi-site Star update.

Ingres Net Features

F–12 Migration Guide

Ingres Net Features
GCF has responsibility for authenticating and validating clients for Ingres
servers. Previously, security was built around operating system capabilities. The
following improvements have been made to Ingres security for Ingres II 2.5:

■ Support for third-party security systems such as Kerberos

■ Enhancements for data encryption and direct network server connections

■ Improved existing security by addressing known problems

■ Backward compatibility for existing applications

Support for third-party security systems requires dynamic configuration
capabilities since these systems are not a requirement for installation. In a design
emulating the emerging standard GSS-API, the Ingres II 2.5 GCF security
architecture is built around independent modules called mechanisms. Standard
default mechanisms are provided for basic Ingres security and backward
compatibility. Third-party security systems are supported through additional
mechanisms, which are dynamically loaded as needed.

GCF security mechanisms provide the following capabilities:

■ User authentication and validation

■ Password validation

■ Trusted server authentication and validation

■ Distributed (single sign-on) authentication and validation

■ Data encryption

Management of GCF security has been enhanced with new configuration
parameters viewable through CBF and the Configuration Manager. Ingres II 2.5
also sees the addition of attributes to the Ingres/Net VNODE database, and new
IMA objects (many of which can be set at runtime) for enhanced IMA support.

Ingres ICE Features
New features added to the internal performance of Ingres/ICE concern security,
session management, storage management, and macro language extensions.

Security

The security model for Ingres/ICE has been enhanced to provide additional
levels of control for access and for content. The model also assists in the
maintenance of large numbers of Internet users by defining profiles and roles.

Ingres ICE Features

Features Introduced in Ingres II 2.5 F–13

Profiles enable Internet users to register themselves by automatically transferring
a predefined set of privileges to the user when the first login is attempted.

Password authentication for intranets may be specified as OS for use with
domain servers and authentication servers.

Session Management

Ingres/ICE uses cookies to identify individual sessions. The session identifier
enables maintenance of session context between pages. Sessions have a
configurable inactivity timeout that when reached rolls back any uncommitted
transactions.

Storage Management

HTML Templates Document content is made available through template files. In Ingres II 2.5,
access to the template files is abstracted to prevent exposure of queries and
schema.

Document Cache
Management

All files accessed within Ingres/ICE are subject to cache management, which
specifies when the file may be closed or removed.

Macro Language Extensions

Macro language extensions in Ingres II 2.5 include:

■ User identification

■ State maintenance

■ Variables

■ Conditional statements

■ Variable testing using the IF or SWITCH macros to provide conditional flow
within template pages

■ Include statements

■ The FUNCTION macro, providing a mechanism for invoking C callable
shared libraries and dynamic link libraries

Visual DBA Features

F–14 Migration Guide

Visual DBA Features
Visual DBA features in Ingres II 2.5 include:

■ DOM windows—new design and features

■ SQL/test—new design and features

■ Star management

■ Full Replicator management

■ ICE management

■ Enterprise access

■ Miscellaneous new features

Replicator Enhancements
Enhancements have been made to the internal performance that concern the
generic Replicator Server and increased replicator concurrency.

Generic Replicator Server

Ingres II 2.5 introduces a generic Replicator Server that is functionally identical to
the custom repserver built by the user in previous releases. The generic
Replicator Server can automatically handle any table that is configured by
RepManager or Visual DBA without the need to compile or link a custom
executable.

Increased Replicator Concurrency

In previous releases, updates to the Replicator shadow, archive, and input queue
tables performed by the DBMS as a result of a replicated user update would use
the same isolation level as the original update (serializable by default). This
isolation level is unnecessary, since the unique key value in the base table must
have already been locked for the update to take place. In this release, the
isolation level has been decreased to read committed, allowing for improved
concurrency of replicated updates.

OpenAPI Enhancements

Features Introduced in Ingres II 2.5 F–15

OpenAPI Enhancements
Environment handles were added to OpenAPI. Environment handles allow
greater application control over configuration of the OpenAPI runtime
environment. OpenAPI version 2 was added to indicate support for environment
handles.

Extensions were made to the following OpenAPI functions to support
environment handles:

■ IIapi_initialize() to allocate environment handles

■ IIapi_connect() to open connections using environment settings

Three new environment handle associated functions were added:

■ IIapi_setEnvParam() for setting environment configuration parameters

■ IIapi_formatData() for converting data values relative to environment
settings

■ IIapi_releaseEnv() to release environment handle resources

Also added is the function IIapi_abort() to forcefully shut down connections
under error conditions.

Features Introduced in Ingres II 2.0 G–1

Appendix

G Features Introduced in Ingres II 2.0

This appendix describes the features and enhancements introduced in
Ingres II 2.0, including:
■ Variable page sizes
■ Larger tuple support
■ Distributed multi-cache management
■ Enhanced performance of locking/logging and buffer manager
■ Interval based deadlock detection
■ Row level locking and transaction isolation levels
■ Alter table support
■ Async I/O support
■ Parallel backup and restore
■ Fast load support
■ R-tree support
■ Spatial data types and operators
■ Statement level rules
■ Temporary tables as procedure parameters
■ Other optimizer enhancements
■ Operating system thread support
■ Table cache priorities
■ Transaction Access mode
■ Soundex function
■ Ingres Star features
■ Ingres Net features
■ Ingres OpenAPI enhancements
■ Ingres ICE features
■ Visual DBA features
■ Server-based replication

Variable Page Size

G–2 Migration Guide

Variable Page Size
Ingres II 2.0 introduced support for multiple page sizes. The supported page
sizes are 2 KB, 4 KB, 8 KB, 16 KB, 32 KB, and 64 KB. The following semantic
change has been made to DDL to support the variable page sizes. A PAGE_SIZE
clause has been added to create table, create index, modify, and declare global
SQL statements:
CREATE TABLE WITH PAGE_SIZE=n;
CREATE INDEX WITH PAGE_SIZE=n;
MODIFY TABLE WITH PAGE_SIZE=n;
DECLARE GLOBAL WITH PAGE_SIZE=n;

Valid page sizes are 2048, 4096, 8192, 16384, 32768, and 65536.

If the WITH PAGE_SIZE clause is omitted, Ingres uses the configuration
parameter default_page_size to determine the page size. For compatibility
reasons, default_page_size defaults to 2048 (2 KB). The different page sizes are
not automatically available. The DBA must configure the buffer cache of the
installation to a specific page size; otherwise, an error occurs. For new buffer
manager configuration parameters, IMA changes, and standard catalog interface
changes, see the Database Administrator Guide.

New Page Format for Larger Page Size

Ingres II 2.0 uses a different physical page format for larger page sizes. The page
headers have been modified for larger page sizes to provide 64-bit TID support
in the future. Additional features such as larger tuples, alter table support, and
row level locking utilize the new page formats and are available only for larger
page sizes. With larger pages, for each tuple, a 24-byte tuple header is stored and
the line table entry for larger page sizes has been increased to 4 bytes. See the
Database Administrator Guide and the System Administrator Guide.

Larger Tuple Support
Ingres II 2.0 supports larger tuples (up to 32 KB) with larger page sizes (64 KB).
The availability of larger tuples is dependent on the availability of larger pages,
for example, through buffer manager configuration. With larger pages,
maximum tuple length of the installation can be configured by the configuration
parameter max_tuple_length. If max_tuple_length is set to a larger value, the
DBMS Server, Star Server, and Recovery Server require more memory. For
compatibility, the max_tuple_length parameter defaults to 2008 bytes. A value
between 1 and 2008 is not recommended. If the max_tuple_length is set to 0,
max_tuple_length is dependent on the availability of the larger buffer manager.

Distributed Multi-Cache Management

Features Introduced in Ingres II 2.0 G–3

Distributed Multi-Cache Management
Ingres II 2.0 supports Distributed Multi-Cache Management. You can use
multiple servers using private buffer caches and fast-commit. The Distributed
Multi-Cache Management exploits the Cluster Technology using a shared disk.
An installation can use either shared cache or distributed multi-cache. No
mixture is permitted. Unlike non-fast-commit servers, Distributed Multi-Cache
Management allows DBAs to configure the servers using fast-commit.
Distributed Multi-Cache Management should not be used in a single CPU
machine or when a single (sole) server is used. A new configuration parameter,
dmcm, has been added to configure Distributed Multi-Cache Management.

Enhanced Performance of Locking/Logging and Buffer
Manager

Ingres II 2.0 is optimized for performance using multiple mutexes to protect the
internal critical data structures for the DBMS. Previous Ingres releases used
single mutexes to protect the locking, logging, and shared buffer manager
systems. The Ingres II 2.0 changes eliminate concurrency bottlenecks in these
systems. Changes in the log records render all previous checkpoints invalid.
After you upgrade to Ingres II 2.0, we recommend that you checkpoint all your
databases for further recovery. Old checkpoint files from CA-Ingres 6.4 and
CA-Ingres 1.2 cannot be rolled forward in Ingres II 2.0.

Interval Based Deadlock Detection
Ingres II 2.0 uses an interval-based deadlock mechanism to detect deadlocks.
This also optimizes the contention within the Ingres lock manager and reduces
CPU usage by the Ingres DBMS. Prior to Ingres II 2.0, all locks caused a deadlock
search when blocked. In Ingres II 2.0, we check for deadlocks at a regular
interval. A new special thread in the Recovery Server has been created to do this
Interval Based Deadlock Detection. The interval for deadlock detection is
controlled dynamically by the Ingres II 2.0 server based on the server utilization.

Row Level Locking and Transaction Isolation Levels

G–4 Migration Guide

Row Level Locking and Transaction Isolation Levels
Ingres II 2.0 supports row locking for tables created with page size greater than 2
KB. The user may request row locking in cases where page locking causes
unnecessary contention.

Row locking is only available to fast-commit servers. Row locking cannot be used
with distributed multi-cache (DMCM) servers.

The set lockmode statement allows you to set the lock granularity, overriding the
default locking strategy selected by the optimizer. The syntax for the set
lockmode statement has been changed to support level=row.

set lockmode session | on table
where level = row | page | table | session | system

Because it is difficult for an optimizer to determine when to use row locking, the
user must decide with the set lockmode statement. The default lock granularity is
page.

Row locks and intended page locks are counted per transaction, and escalation to
TABLE locking occurs if this count reaches the maximum locks per transaction.
Row locks and intended page locks are not counted for the MAXLOCKS per
query. Ingres II 2.0 supports four SQL-92 transaction isolation levels. The
supported levels are serializable, repeatable read, read committed, and read
uncommitted.

The new set transaction statement lets you specify the isolation level for a
transaction. For details, see the SQL Reference Guide.

The read uncommitted isolation level does not take read-locks, and allows dirty
read. The read committed isolation level takes read-locks, and then immediately
releases them; this prevents dirty read, but allows unrepeatable read.

The repeatable read isolation level takes and holds read-locks on all data actually
read by a query, preventing unrepeatable read, but permitting phantom read.

The serializable isolation level takes and holds read-locks on all rows potentially
accessed by a where clause, preventing phantom read. The serializable isolation
level is equivalent to the default behavior in previous releases.

Alter Table Support

Features Introduced in Ingres II 2.0 G–5

Alter Table Support
In Ingres II 2.0, the alter table statement supports add and drop column
functionality. For details on the semantic changes, see the SQL Reference Guide.

In this release, NOT NULL in the null_clause and WITH DEFAULT in the
default_clause is not supported. Alter Table add/drop column is only available
to page sizes larger than 2048 KB. Ingres II 2.0 uses a versioning technique to
support the above SQL-92 compliant alter table statement. For performance
reasons, the statement does not update user data. The newly added column
defaults to NULL value for the existing rows. Note that alter table statement does
not reclaim space for the deleted columns. You can modify the table to reclaim
the space for the deleted columns.

Async I/O Support
On operating systems that support asynchronous I/O, Ingres allows the use of
either I/O slaves or in-process asynchronous I/O, which may provide a
performance improvement for those systems.

The basic tenet for a DBMS (and RCP) server is that disk I/O should never cause
the server to block while there is other work pending. To achieve this, Ingres has
passed all disk I/O requests to separate processes (called I/O slaves), up to a limit
of 30 per server, to do the actual disk operations. The slave processes perform the
task synchronously and notify the server when it is completed. Each I/O
operation using I/O slaves involves, among other things, a number of context
switches from server to slave and back again. Context switching between
processes is an expensive task when compared to context switching within a
process. Performing the same non-blocking I/O within the server process
provides a more efficient way to achieve non-blocking I/O.

Ingres II 2.0 provides a new per-server configuration parameter called async_io
that can be set in CBF to enable the in-process asynchronous I/O and disable I/O
slaves. In a multiple-server installation, each server can be configured separately
to use either slaves or asynchronous I/O.

For operating systems that allow OS threading (discussed later), neither slaves
nor async I/O is optimal. The best choice on OS-thread platforms is in-thread
blocking I/O.

Parallel Backup and Restore

G–6 Migration Guide

Parallel Backup and Restore
Parallel backup and restore enhancements in Ingres II 2.0 include:

■ Parallel checkpointing to disk

■ Parallel checkpointing to tape

■ Parallel rollforwarddb from disk

■ Parallel rollforwarddb from tape

Parallel Checkpointing to Disk

To checkpoint a multi-location database to disk in parallel, use the #m flag
followed by the number of parallel checkpoints to be run:
ckpdb '#m2' dbname

This saves two data locations at a time to the II_CHECKPOINT location.

Parallel Checkpointing to Tape

To checkpoint a multi-location database to tape in parallel, list the devices to be
used with the -m flag:
ckpdb -m/dev/rmt/0m,/dev/rmt/1m dbname

This saves one location per tape. The first location is stored on device 0m. The
second location is stored on device 1m. The third location is stored on whichever
device is done first. The remaining locations are stored on the next free device.
The operator is prompted to insert a new tape for each location.

Parallel Rollforwarddb from Disk

To roll forward a multi-location database to disk in parallel, use the #m flag
followed by the number of parallel restores to be run:
rollforward '#m2' dbname

This restores two data locations at a time from the II_CHECKPOINT location.

Parallel Rollforwarddb from Tape

To roll forward a multi-location database from tape in parallel, list the devices to
be used with the -m flag:
rollforward +c -m/dev/rmt/0m,/dev/rmt/1m dbname

Fast Load Support

Features Introduced in Ingres II 2.0 G–7

The first location is restored from device 0m. The second location is restored
from device 1m. The third location is restored from whichever device is finished
first. The remaining locations are restored from the next free device. The operator
is instructed to insert the numbered tape into the free device.

Fast Load Support
Ingres II 2.0 supports a new fast bulk loading of data into a single table in a
single database; the fastload command can load binary formatted files into
database tables. In contrast to the copy statement, the fastload command is run
from the command line and uses Ingres low-level record management functions
directly to load the data. It does so without the use of a connection to an Ingres
DBMS, and thus avoids passing data through communications channels on the
system. The user's process reads the input file and writes to the table in the
database. The loading of some complex data types and the use of some table
structures are not supported in all situations. For details, see the Database
Administrator Guide.

R-tree Support: A Spatial Index for Ingres II 2.0
This is a new access method for secondary indexes on ordered pair data. This is
directed at spatial data types, but it can be extended to user-defined types. R-tree
indexes can be created for any base table type: B-tree, hash, heap, and isam,
using the create index command with structure=rtree syntax.

This access method provides lightning lookup to solve range queries and spatial
joins for large numbers of objects. Record pointers are stored in spatial sequence
(that is, consecutive objects in the index represent objects that are physically
close). An R-tree index participates in the usual query optimization and is used
with the operators inside, intersects, and overlaps.

Spatial Data Types and Operators
There are integer forms of point, box, lseg, line, polygon, and circle. Up to 249
ipoints can be used in an iline, versus 124 points in a line. Line, iline, polygon,
and ipolygon are stored in compressed variable length form when
“compression=data” is defined for the table. Spatial data types can be
constructed from their base components. For example, mybox = box (llpoint,
urpoint).

Statement Level Rules

G–8 Migration Guide

New data types, nbr and hilbert, can be used to order spatial data. A new
overlaps operator determines if two objects have any points in common. Spatial
operators support infix notation. For example:

select count(*) where property_location intersects pond-area;

Statement Level Rules
Prior to Ingres II 2.0, row level rules support resulted in the invocation of the
rules procedure for every row qualified by the triggering statement. This can
entail a significant amount of overhead, particularly for auditing rules
applications that may be interested in the number of rows touched rather than
their actual contents.

The statement level rules feature of 2.0 allows users to create rules that call the
corresponding procedure exactly once for each execution of the triggering
statement, rather than once for each row touched. The same information is still
made available to the procedure as with row-level rules. For each qualifying row
touched by the triggering statement, a row is inserted into an internal temporary
table. This row contains the data from the parameter list of the rule definition’s
execute procedure statement. The entire temporary table is then passed to the
rule procedure for processing (see Temporary Tables as Procedure Parameters in
this appendix).

Temporary Tables as Procedure Parameters
Ingres database procedures previously had limited ability to process bulk
information. This is largely the result of the restriction requiring that scalar
parameters be passed between the caller and the procedure. Release 2.0 permits a
global temporary table to be passed as a parameter to an Ingres database
procedure. The temporary table can contain as many rows as desired upon entry
to the procedure, permitting the procedure statements to process all the data
with a single call. Likewise, the temporary table can be empty on entry to the
procedure, to be filled by retrieval statements inside the procedure. The
declaration of the temporary table inside the procedure allows it to be treated as
any other Ingres table. It can be referenced in the “from” clause of a select or
update statement and can be the target of an insert, delete, or update statement
within the procedure. The potential effect of the feature is to reduce the number
of procedure calls required to process a given quantity of data.

Other Optimizer Enhancements

Features Introduced in Ingres II 2.0 G–9

Other Optimizer Enhancements
Several changes were made to the optimizer in Ingres II 2.0 to improve the
quality of the generated query plans. The changes include the following:

■ Reduction in size of generated query plans

■ Improvement of join cardinality estimates

■ Improvement of selectivity estimates for <> (not equals) restriction
predicates

Following similar improvements in Ingres 1.2, changes were made to various
internal query plan structures to further reduce the size of query plans generated
by Release 2.0. The combined effect of the 1.2 and 2.0 changes reduces typical
query plans by 40 percent to 60 percent. This frees QSF cache for use by more
queries, resulting in significantly improved cache utilization.

A new statistic and new formulas have been introduced into Release 2.0 which
should result in more accurate estimates of the number of rows produced by the
join of two tables in an Ingres query. Since row estimates are a major component
of the algorithms used to generate query plans, these enhancements should
result in improved query optimization. The new statistic is a “per-cell” repetition
factor. It reflects the average number of rows per distinct column value for
EACH cell of a histogram, thus allowing more accurate join estimates. The new
statistic is automatically computed by Release 2.0 optimizedb requests, and is
displayed by Release 2.0 statdump requests. Moreover, Ingres II 2.0 uses the
default for prior release histograms, so that no statistics upgrade is required.

Ingres has always used histogram values to estimate the number of rows
qualified by =, <, <=, >=, and > restriction predicates. As with the join cardinality
estimates, these accurate row counts allow Ingres to build optimal query plans.
Release 2.0 introduces histogram-based selectivity estimates for <> (not equals)
restriction predicates, as well. This allows Ingres II 2.0 to generate even better
query plans.

Operating System Thread Support
A major enhancement to Ingres on operating systems that support operating-
system threads is greater support for symmetrical multi-processor (SMP)
machines. The database server takes full advantage of the ability of the operating
system to balance processing time among all the available CPUs. By mapping
database tasks to operating-system threads, individual sessions are dynamically
balanced among available CPUs, providing greater throughput and scalability.

Table Cache Priorities

G–10 Migration Guide

OS threading reduces or eliminates the need to run multiple DBMS servers in an
installation. Because the OS instead of the DBMS is doing the scheduling, load
balancing and Ingres administration is greatly simplified. OS threading also
allows individual threads to block on I/O, eliminating the need for I/O slaves or
complex async I/O schemes.

Table Cache Priorities
Database page cache priorities are normally assigned and managed by
algorithms within the Ingres buffer manager. This addition allows tables to be
assigned fixed priorities, which reduces the page replacement rate for those
tables in a properly configured cache. For the syntax for assigning fixed cache
priority, see the SQL Reference Guide.

Transaction Access Mode
Support is included for the access mode of a transaction. For syntax information,
see the SQL Reference Guide.

Soundex Function
Ingres II 2.0 supports a new string function—SOUNDEX. The results of
SOUNDEX are a char(4), and similar sounding words have the same SOUNDEX
value. This is particularly useful when searching for names. For example:
SELECT fname, lname, addr1, addr2 from customer_table
 WHERE SOUNDEX(fname) = SOUNDEX('kathy');

Note: The SOUNDEX function is case-insensitive.

Ingres Star Features
Ingres II 2.0 Star Server supports variable page size and larger tuples as well as
connectivity with previous CA-Ingres releases. To support variable page size, the
standard catalog interface has been changed to include page sizes and other
catalog changes. For a description of the new standard catalog interfaces, see the
Database Administrator Guide and the System Administrator Guide.

Ingres Net Features

Features Introduced in Ingres II 2.0 G–11

Ingres Net Features
New features for Ingres Net include the following.

Protocol Bridge Support

Ingres Protocol Bridge resolves the problem of connecting an Ingres client on one
network to a server on a different type of network. Under the current
architecture, a client and server must be able to communicate over the same
network protocol (such as TCP/IP or SNA_LU62). The protocol bridge will
“bridge” a client using one network protocol to a server using another. For
example, a PC on a TCP/IP network could communicate through the protocol
bridge to an EDBC gateway (DB2, IMS, CA-Datacom/DB, and so on) on an SNA
network.

The protocol bridge provides communication capability between incoming
connections and outgoing connections using a different underlying protocol. It
listens for and accepts incoming connection requests and establishes
corresponding connections to a local or remote communication server, allows bi-
directional data transfer over the established connections, and terminates
connections in an orderly way.

The protocol bridge does not provide any security checking when passing the
messages through; security is still handled as usual on the server.

For information on installing, starting and stopping, monitoring, and tracing the
Protocol Bridge Server, see the System Administrator Guide.

Data-Stream Compression Support

Ingres II 2.0 supports data-stream compression for variable-length data types,
such as varchar and byte varying. Previously, when a client performed a COPY
FROM or SELECT operation, the DBMS would send varchars at their maximum
lengths, even if only a small fraction of the varchars contained usable data. In
Ingres II 2.0, the DBMS sends only the usable data. This is true for both local and
network connections.

Database administrators may disable data-stream compression by invoking CBF,
and setting the vch_compression parameter of the DBMS to OFF. This disables
compression when the DBMS is re-started. Individual clients may disable
compression by setting the environment variable II_VCH_COMPRESS_ON to N.
Setting II_VCH_COMPRESS_ON to Y, or unsetting II_VCH_COMPRESS_ON,
re-invokes data-stream compression only if the vch_compression parameter of
the DBMS is ON.

Ingres OpenAPI Enhancements

G–12 Migration Guide

SNA Duplex Support

In previous releases of Ingres/Net, a single SNA LU 6.2 conversation was used
to support each client/server SNA connection. Since LU 6.2 conversations are
inherently half-duplex, and Ingres transactions cannot be guaranteed to be, a
large amount of overhead was created in order to maintain the flexible Ingres
client/server dialog. This was a problem only with the SNA LU 6.2 protocol
driver since the other protocols supported by Ingres/Net use full duplex
protocol.

In this release of Ingres/Net, the overhead of maintaining the half-duplex nature
of SNA LU 6.2 has been eliminated by using two conversations per client; one
conversation stays in send state, the other in receive state. There are two
important consequences of this implementation:

■ Response time shows an approximate 50% improvement as the result of
avoiding all request-to-send and prepare-to-receive calls.

■ Only half the number of clients can be supported.

This feature can be controlled by a new environmental variable,
II_HALF_DUPLEX. If this variable is set to 1, classic CA-Ingres/Net half-duplex
operation is enabled. If this variable is undefined or set to 0, Ingres/Net 2.0 full
duplex operation is enabled.

DECNet/OSI Support

On VMS systems, users may enter Phase-V-style node names, which may be
greater than seven characters, for node addresses.

Ingres OpenAPI Enhancements
New features for OpenAPI include the following.

Multi-Threaded OpenAPI

Ingres II 2.0 OpenAPI supports multi-threading development and runtime
environments for multi-threaded applications. Multi-threading support is
platform-dependent. For more details, see the platform-specific Release Notes
Supplement. There is no external change required for multi-threaded OpenAPI
support.

Ingres ICE Features

Features Introduced in Ingres II 2.0 G–13

OpenAPI Support for Autocommit

Ingres II 2.0 OpenAPI supports the SET AUTOCOMMIT statement through
special autocommit transaction handles. Autocommit transactions are
enabled/disabled through the new OpenAPI function, IIapi_autocommit(). For
details, see the Ingres II 2.0 OpenAPI User Guide.

Enhanced OpenAPI Support for Database Events

Ingres II 2.0 OpenAPI introduces enhanced support for database events with the
IIapi_getEvent() function. This function permits an application to wait for
database event notification when client/server activity is idle. Previously,
applications would only receive database event notifications when other non-
event related client/server communications were occurring.

Ingres ICE Features
New Ingres/ICE features for Ingres II 2.0 include:

■ Support for the Microsoft Internet Information Server on Windows NT
through a version of Ingres/ICE written for Microsoft ISAPI (Internet Server
API)

■ Support for NSAPI (Netscape API)

■ Connection caching for ISAPI, ADI, and NSAPI interfaces, providing
improved performance

■ Requests and result pages can be up to 2 GB in size, subject to available disk
and memory space

■ Support for SQL select statements.

The result set of the select is automatically formatted as a table and displayed
on the client browser.

■ Support for BLOB data

Images stored as binary database objects may be selected and displayed on
the client browser.

■ A new HTML macro feature

Template HTML files that contain simple macros specifying SQL statements
can be created. When Ingres/ICE loads the macro file, it replaces the macros
with the result of the SQL statements, allowing data from different tables
and databases to be combined on a single page.

Visual DBA Features

G–14 Migration Guide

■ Improved security

Ingres/ICE interoperates with the security configuration of the target Web
server. The HTTP basic authentication protocol is fully supported. This
means that user IDs and passwords can be passed in an encoded form across
the network.

■ HTML-based installation and configuration utility

Visual DBA Features
Visual DBA 2.0 differentiates between the following installations:

■ Ingres 2.x installation

■ CA-Ingres 1.x installation

■ Local CA-Ingres/Desktop server

■ Other installations

Users can connect and open simultaneously several windows displaying these
installations. The ability to drag and drop tables is available between CA-Ingres
1.x, Ingres 2.x, and local CA-Ingres/Desktop server windows.

Enhancements The new Visual DBA features for Ingres II 2.0 installations include:

■ Alter table support through Visual DBA 2.0

■ Support of variable page size for Create Table, Create Index, and Modify
commands, as well as the space calculations

■ Management of table-level unique constraints and table-level check
constraints both in Create and Alter Table

■ References sub-dialog of Create Table is redesigned

■ Support of table-level checkpoint and rollforwarddb

■ Support for CA-Ingres Replicator versions 1.0/03, 1.0/05, 1.1, or 2.0

The following new features are also available for 1.x installations:

■ Management of table level unique constraints and table level check
constraints in create table

■ Create table as select in Visual DBA 2.0 (with the Assistant to build the select
statement)

Server-based Replication

Features Introduced in Ingres II 2.0 G–15

Server-based Replication
The initial data capturing of Ingres/Replicator is performed inside the Ingres
DBMS. Internal DBMS functions and system threads have superseded the use of
database rules and an application external to the DBMS to maintain the
Replicator input and distribution queues. Any lock contention caused by
previous versions of CA-Ingres Replicator has been eliminated, and Replicator
data capture work is performed at a much lower level, producing more
streamlined and faster performing replication.

The Ingres/Replicator product is delivered as part of the base Ingres II 2.0
release, and the configuration and installation tools are integrated into the base
Ingres setup tools. See the Getting Started guide.

Index G–1

 Index

4

4GL table_key type conversions, B-3

6

64 bit file support, F-10

64-bit operating systems, E-8

A

aggregate sort nodes, E-6

alter table support, G-5

ANSI/ISO constraint, F-3

applications
install upgraded, B-35
installing upgraded, 4-16
issues, 1-7
lifecycle, 1-7
planning, 2-3
preparation, 2-3
preparation if migrating from 6.4, B-1
rebuilding in Ingres on OpenVMS, A-3

archiver exit shellscript, B-4

arithmetic errors, greater sensitivity to, B-3

async I/O support, G-5

auditdb utility enhancements in 2.6, E-3

auto commit, OpenAPI support for, G-13

automated creation of location directories, E-5

AXM build. See OpenVMS

B

binary level support, 1-5

bit-wise operator support, F-9

buffer manager, G-3
performance improvements, E-8

BYREF errors, greater sensitivity to, B-2

C

character data types maximum size in 2.6, E-2

character sets for Euro currency symbol, E-11

checkpoint
template, 2-8, 3-7, B-16
the database, B-8

compiling applications, 2-7

concurrency, Replicator, F-14

concurrent rollback, E-6

Configuration-By-Forms, 4-11, B-17

conversions, 4GL table_key type, B-3

copydb utility enhancements, E-3

D

data type changes, user-defined, B-3

database
checkpoint, 4-15, B-35
destroying, 4-7, B-25
events, OpenAPI support for, G-13

Index–2 Migration Guide

extend, 4-13, B-33
information, record, 3-3, B-10
moving, 2-5
recreate, 4-13, B-32
unload, 4-5, B-23

DBA enhancements in 2.6, E-3

decimal constant, semantics change, B-2

DECNet/OSI support, G-12

default locations, record, B-13, B-28

destroydb command, 4-7, B-25

distributed multi-cache management, G-3

Distributed Option
databases, moving, 2-6

dmf sort, F-2

dynamic write behind threads, F-5

E

enhancements
in Release 2.0, G-1
in Release 2.5, F-1
in Release 2.6, E-1

errors, arithmetic, B-3

Euro currency symbol support, E-11

extended date support, F-10

F

fast load support, G-7

FE reload script, fix, 4-14, B-34

front-end upgrade, 4-15, B-34

G

GatherWrite threads, E-4

generic Replicator Server, F-14

H

hardware
implementation, 1-5
planning, 1-5
testing, 1-5

histograms, composite, E-7

I

ICE
development environment, E-9
document cache management, F-13
enhancements in 2.0, G-13
enhancements in 2.5, F-12
enhancements in 2.6, E-9
macro language extensions, F-13
security, F-12
session management, F-13
storage management, F-13

iidbdb, clean, 4-7, B-25

image file formats, OpenROAD 4.0, 2-12

Import Assistant, E-4

infodb utility, 3-3, 4-5, B-10, B-23

ingprenv
record default locations, B-13, B-28
replaces ingprenv1, B-4

ingprenv1, B-4

Ingres 6.4
considerations for, B-1
upgrading from using unload/reload, B-19
upgrading from using upgradeb, B-5

Ingres Net. See Net

Ingres Star. See Star

installation
development, 1-5
production, 1-5
testing the upgrade, 1-5

internal performance enhancements in 2.6, E-6

interval-based deadlock detection, G-3

 Index–3

J

JDBC enhancements in 2.6, E-10

Journal Analyzer, E-4

journaling on by default, B-3

K

keywords, D-1
reserved, 2-3
single, D-2

L

language enhancements in 2.6, E-1

large cache support, F-4

large catalogs, F-10

locking system performance, E-7, G-3

logging system performance, E-8, G-3

logins, fix, B-13, B-27

M

member_aligned version, A-3

Metaschema module, 2-6

Microsoft Transaction Server support, E-6

migrating
Ingres II 2.0 to AXM on OpenVMS, A-1

migrating on OpenVMS
building COBOL applications, A-5
building member_aligned against Ingres, A-3
C applications, building, A-4
installation issues, A-2
installing Ingres, A-1
rebuilding applications, A-3
schema checking, A-3

multi-threaded OpenAPI, G-12

N

Net, 1-5, G-11
data-stream compression support, G-11
DECNet/OSI support, G-12
enhancements in 2.5, F-12
protocol bridge support, G-11
setup, 4-11, B-17, B-31
SNA duplex support, G-12

netutil, 4-11, B-31

new features
in Release 2.0, G-1
in Release 2.5, F-1
in Release 2.6, E-1

O

ODBC driver, E-9

OpenAPI, G-12
multi-threaded, G-12
support for auto commit, G-13
support for database events, G-13

OpenROAD 4.0 image file formats, 2-12

OpenVMS
migrating to Ingres II 2.0 AXM on, A-1

OpenVMS requirements, A-1

operating system integration in 2.6, E-8

operating system thread support, G-9

optimizeddb, F-6

optimizer, G-9
reapply statistics, 4-15, B-18, B-35
support for hash joins, E-7

P

page format, new, G-2

parallel
backup and restore, G-6
checkpointing to disk, G-6
checkpointing to tape, G-6
rollforwarddb from disk, G-6
rollforwarddb from tape, G-6

Index–4 Migration Guide

sort techniques, F-3

parameters, UNIX kernel, 2-10

partitioned transaction log file, F-5

preallocated rsb/lkbs, E-7

Q

qef sort, F-2

query optimization, F-11

R

raw location support, E-4

read-only database support, F-6

record output configuration, B-25

reload upgrade, 4-1, B-19

reload.ing, 4-15, B-34

Remote Command Server, 3-2, 4-4, E-6

Replicator enhancements
generic server, F-14
increased concurrency, F-14

Report-Writer
runtime parameter errors, 2-4
syntax change, 2-4

reserved words, A-3, D-1
conflicts, 2-6
new, 2-3

row
level locking, G-4
locking for system catalogs, F-10
producing procedures in 2.6, E-1

R-tree support, G-7

S

scripts
fix FE reload, 4-14, B-34

search path, shared library, 2-9

server-based replication, G-15

shared library search path, 2-9

shellscripts
archiver exit, B-4
for system monitoring, 2-8

showrcp command, B-25

shut down Ingres, 3-2, 4-4, B-4, B-8, B-22

site modifications
preserve, 3-4, 4-8, B-12, B-26
restore, 3-7, 4-11, B-16, B-30

sort enhancements, F-2

soundex function, G-10

spatial data types and operators, G-7

SQL functionality, F-7
bit-wise operator support, F-9

Star. See also Distributed Option
features in 2.0, G-10
features in 2.5, F-11

start Ingres, 3-7, 4-12, B-16, B-31

startup, 3-7, 4-12, B-4, B-16, B-31
disable, 4-7, B-26

statdump command, 4-5, B-9, B-23

statement level rules, G-8

storage structures, reapply, B-18

syntax, Report-Writer, 2-4

system administration
backup, 2-9
practice upgrade, 2-11
preparation, 2-8
restore, 2-9
testing, 2-11

system backup, 3-2, 4-4, B-8, B-22

system monitoring shellscripts, 2-8

system_maintained column name, 2-7

T

table cache priorities, G-10

temporary tables as procedure parameters, G-8

 Index–5

testing, 2-7

thread implementation on Linux in 2.6, E-9

transaction
access mode, G-10
isolation levels, G-4
log size, B-5

tuple size, larger, G-2

U

Unicode support, E-10

UNIX kernel parameters, 2-10

unload directory, create, 4-2, B-6, B-21

unload upgrade, 4-1, B-19

unload/reload procedure, 4-2, B-20
back up system, 4-4, B-22
check for obsolete users, 4-3, B-21
checkpoint database, 4-15, B-22, B-35
clean iidbdb, 4-7, B-25
configure Ingres, B-30
create unload directory, 4-2, B-21
create work location, B-28
destroy database, 4-7, B-25
disable Ingres startup, 4-7, B-26
extend database, 4-13, B-33
fix FE reload script, 4-14, B-34
fix logins, B-27
install Ingres, 4-9, B-29
install upgraded applications, 4-16, B-35
optional checkpoints, 4-3
preserve site modifications, 4-8, B-26
print optimizer statistics, 4-5, B-23
reapply optimizer statistics, 4-15, B-35
record default locations, B-28
record infodb output, 4-5, B-23
record Ingres configuration, B-25
recreate database, 4-13, B-32
reload database, 4-15, B-34
restore site modifications, 4-11, B-30
run unloaddb, 4-2, B-21
set up Net, 4-11, B-31
shut down Ingres, 4-4, B-22
start Ingres, 4-12, B-31
unload database, 4-5, B-23
upgrade front-end catalogs, 4-15, B-34
when to use, 1-2

unloaddb command, 2-5, 2-6, 4-2, 4-5, B-5, B-6, B-21

output, B-7

update mode locking, F-11

UPDATE…FROM semantics change, B-1

upgrade
applications, 1-7, 4-16, B-35
hardware issues, 1-5
planning, 1-1
using unload/reload procedure, 4-1, B-19
using upgradedb procedure, 3-1, B-5

upgradedb procedure
application upgrade, 3-8, B-19
back up system, 3-2, B-8
check for obsolete users, B-7
checkpoint the database, 3-3, 3-8, B-8, B-11, B-19
clean iidbdb database, B-11
clean up Ingres 6.4, B-14
configure Ingres, B-17
create unload directory, B-6
create work location, B-14
disable Ingres startup, B-12
disable user access, 3-1, B-8
edit unloaddb output, B-7
fix logins, B-13
install Ingres, 3-5, B-15
preserve site modifications, 3-4, B-12
print optimizer statistics, B-9
reapply optimizer statistics, B-18
reapply storage structures, B-18
record database information, 3-3, B-10
record default locations, B-13
record Ingres configuration, B-11
recreate objects, B-18
remove non-table objects, B-9
restore site modifications, 3-7, B-16
run unloaddb, B-6
run upgradedb utility, 3-7, B-16
set up Net, B-17
shut down Ingres, 3-2, B-8
start Ingres, 3-7, B-16
when to use, 1-2

user access, disable, 3-1, B-8, B-22

user check, 4-3, B-7, B-21

usermod utility, E-3

V

value locking protocol, F-11

Index–6 Migration Guide

variable page size, G-2

Visual DBA, F-14, G-14

VMSinstal, running, A-2

W

work location, create, B-14, B-28

X

xml import/export utility, E-4

	Bookshelf
	Ingres Migration Guide
	Contents
	Chapter 1: Introduction
	Planning the Upgrade
	New Ingres Features

	Upgrade Types
	Upgradedb Method
	Unload/Reload Method

	Ingres Releases
	From Releases Prior to Ingres 6.4
	From Ingres 6.4
	From Releases Newer than Ingres 6.4
	From a 32-bit to a 64-bit Release
	To Member-Aligned Alpha OpenVMS (axm.vms)
	Binary Level Support

	Installations and Hardware
	Possible Hardware Setups

	Overview of Upgrade Procedure
	Application Issues
	The Test Plan for Applications
	Keys to Success
	Debugging

	Chapter 2: Getting Started
	Note on Platform-specific Examples
	Upgrading from Ingres 6.4
	Creating a New Ingres Development Installation
	Preparing Your Applications
	New Reserved Keywords
	Report-Writer Syntax Change
	Report-Writer Runtime Parameter Errors

	Loading Databases and Applications into the New Installation
	Creating Users
	Moving Databases
	Moving Catalogs
	Moving Distributed Option Databases
	The system_maintained Column Name
	Compiling Applications
	Testing

	Preparing Your System
	System Monitoring Shellscripts
	Checkpoint Template Changes
	Other Checkpoint and Rollforward Changes
	Backup and Restore
	Shared Library Search Path
	UNIX Kernel Parameters

	Testing
	Performance Testing
	System Administrator Procedures
	Practicing the Upgrade
	Before the Live Upgrade

	OpenROAD 4.0 Image File Formats

	Chapter 3: Upgrading Using Upgradedb
	Upgradedb Upgrade Procedure
	Step 1: Disable User Access
	Step 2: Disable Remote Command Server
	Step 3: Shut Down Ingres and Back Up System
	Step 4: [Each DB Including iidbdb] Clean the Database
	Step 5: [Each DB] Record Database Information
	Step 6: [Each DB Including iidbdb] Checkpoint and Turn Off Journaling
	Step 7: Shut Down Ingres
	Step 8: Preserve Site Modifications
	Visual DBA Configurations

	Step 9: Delete Install Directory
	Step 10: Install Ingres
	Upgrading to Older Versions That Require a Patch

	Step 11: Create imadb Database
	Step 12: Restore Site Modifications
	Step 13: Start Ingres
	Step 14: Run Upgradedb Utility
	Step 15: Review Ingres Configuration
	Step 16: [Each DB] Reapply Optimizer Statistics (Optional)
	Step 17: [Each DB including iidbdb] Checkpoint the Database
	Step 18: Install Upgraded Applications

	Chapter 4: Upgrading Using Unload/Reload
	Two Variations
	Unload/Reload Upgrade Procedure
	Step 1: [Each DB Including iidbdb] Create Unload Directories
	Step 2: [Each DB] Run Unloaddb
	Step 3: [Each DB] Check for Obsolete Users
	Step 4: [Each DB Including iidbdb] Checkpoint the Database (Optional)
	Step 5: Disable User Access
	Step 6: Disable Remote Command Server
	Step 7: Shut Down Ingres and Back Up System
	Step 8: [Each DB] Unload the Database
	Step 9: [Each DB] Print Optimizer Statistics (Optional)
	Step 10: [Each DB] Record Database Information
	Step 11: Record Database Privileges
	Step 12: Save Users, Groups, and Roles
	Step 13: [Each DB] Destroy the Database
	Step 14: Clean iidbdb Database
	Step 15: Shut Down Ingres
	Step 16: Disable Ingres Startup
	Step 17: Preserve Site Modifications
	Visual DBA Configurations

	Step 18: Delete Install Directory
	Step 19: Install Ingres
	Upgrading to Older Versions That Require a Patch

	Step 20: Create imadb Database
	Step 21: Restore Site Modifications
	Step 22: Review Ingres Configuration
	Step 23: Set Up Ingres Net
	Step 24: Start Ingres
	Step 25: Recreate Users, Groups, and Roles
	Step 26: Recreate Locations
	Step 27: [Each DB] Recreate the Database
	Step 28: [Each DB] Extend the Database
	Step 29: Recreate Database Privileges
	Step 30: [Each DB] Fix FE Reload Script
	Step 31: [Each DB] Reload the Database
	Step 32: [Each DB] Upgrade Front-End Catalogs
	Step 33: [Each DB] Reapply Optimizer Statistics
	Step 34: [Each DB including iidbdb] Checkpoint the Database
	Step 35: Install Upgraded Applications

	Appendix A: Considerations for Alpha OpenVMS
	OpenVMS Requirements
	Installing Ingres
	Mounting the CD
	Running VMSINSTAL
	Known Installation Issues

	Schema Checking
	Rebuilding Applications
	Building Member_Aligned Against Ingres 2.6 or r3
	For C Applications
	For COBOL Applications

	Appendix B: Upgrading from Ingres 6.4
	Considerations for Ingres 6.4
	Preparing Your Applications
	UPDATE . . . FROM Semantics Change
	Decimal Constant Semantics Change
	Greater Sensitivity to BYREF Errors
	Journaling On by Default
	Greater Sensitivity to Arithmetic Errors
	4GL TABLE_KEY Type Conversions
	User-Defined Data Type Changes
	Summary

	Preparing Your System
	Ingres Startup and Shutdown
	ingprenv Replaces ingprenv1
	Archiver Exit Shellscript
	Transaction Log Size

	Upgrading from 6.4 Using Upgradedb
	Procedure
	Step 1: [Each DB Including Distributed Option DDBs] Create Unload Directory
	Step 2: [Each DB Including Distributed Option DDBs] Run Unloaddb
	Step 3: [Each DB Including Distributed Option DDBs] Check for Obsolete Users
	Step 4: [Each DB] Edit the Unloaddb Output
	Step 5: [Each DB Including iidbdb] Checkpoint the Database (Optional)
	Step 6: Disable User Access
	Step 7: Shut Down Ingres and Back Up System
	Step 8: [Each DB] Print Optimizer Statistics (Optional)
	Step 9: [Each DB] Remove Non-table Objects
	Step 10: [Each DB] Record Database Information
	Step 11: Clean iidbdb Database
	Step 12: [Each DB Including iidbdb] Checkpoint and Turn Off Journaling
	Step 13: Record Ingres Configuration
	Step 14: Shut Down Ingres
	Step 15: Disable Ingres Startup
	Step 16: Preserve Site Modifications
	Step 17: Fix Logins
	Step 18: Save Ingres Settings
	Step 19: Clean Up Ingres 6.4
	Step 20: Create Work Location
	Step 21: Install Ingres
	Upgrading to Versions That Require a Patch

	Step 22: Create imadb Database
	Step 23: Restore Site Modifications
	Step 24: Start Ingres
	Step 25: Run Upgradedb Utility
	Step 26: Configure Ingres
	Step 27: Set Up Ingres Net
	Step 28: [Each DB] Recreate Objects
	Step 29: [Each DB] Reapply Storage Structures
	Step 30: [Each DB] Reapply Optimizer Statistics
	Step 31: [Each DB including iidbdb] Checkpoint the Database
	Step 32: Install Upgraded Applications

	Upgrading from 6.4 Using Unload/Reload
	Two Upgrade Types
	Front-end Catalogs
	Procedure
	Step 1: [Each DB Including iidbdb] Create Unload Directory
	Step 2: [Each DB] Run Unloaddb
	Step 3: [Each DB] Check for Obsolete Users
	Step 4: [Each DB Including iidbdb] Checkpoint the Database (Optional)
	Step 5: Disable User Access
	Step 6: Shut Down Ingres and Back Up System
	Step 7: [Each DB] Unload the Database
	Step 8: [Each DB] Print Optimizer Statistics (Optional)
	Step 9: [Each DB] Record Database Information
	Step 10: Record Database Privileges
	Step 11: Save Users, Groups, and Roles
	Step 12: [Each DB] Destroy the Database
	Step 13: Clean iidbdb Database
	Step 14: Record Ingres Configuration
	Step 15: Shut Down Ingres
	Step 16: Disable Ingres Startup
	Step 17: Preserve Site Modifications
	Step 18: Fix Logins
	Step 19: Save Ingres Settings
	Step 20: Clean Up Ingres 6.4
	Step 21: Create Work Location
	Step 22: Install Ingres
	Upgrading to Versions That Require a Patch

	Step 23: Create imadb Database
	Step 24: Restore Site Modifications
	Step 25: Configure Ingres
	Step 26: Set Up Ingres Net
	Step 27: Start Ingres
	Step 28: Recreate Users, Groups, and Roles
	Step 29: Recreate Locations
	Step 30: [Each DB] Recreate the Database
	Step 31: [Each DB] Extend the Database
	Step 32: Recreate Database Privileges
	Step 33: [Each DB] Fix FE Reload Script
	Step 34: [Each DB] Reload the Database
	Step 35: [Each DB] Upgrade Front-end Catalogs
	Step 36: [Each DB] Reapply Optimizer Statistics
	Step 37: [Each DB including iidbdb] Checkpoint the Database
	Step 38: Install Upgraded Applications

	Corresponding Parameter Names
	Parameters in 6.4 rundbms.opt File
	Locking and Logging System Parameters

	Appendix C: Troubleshooting Upgradedb Problems
	Troubleshooting Tips

	Appendix D: Keywords
	Table Key
	Reserved Single Keywords
	Reserved Double Keywords
	Other Reserved Keywords

	Appendix E: Features Introduced in Advantage Ingres 2.6
	User-Visible Language Enhancements
	Row Producing Procedures
	SUBSTRING Function
	New Aggregate Functions

	Increased Maximum Size of Character Data Types
	User-Visible DBA Enhancements
	Usermod Utility
	Auditdb Utility
	Copydb Utility
	Raw Location Support
	GatherWrite Threads
	XML Import/Export Utility
	Journal Analyzer
	Import Assistant
	Automated Creation of Location Directories
	Remote Command Server Enhancements
	Microsoft Transaction Server Support
	Concurrent Rollback

	Internal Performance Enhancements
	Aggregate Sort Nodes
	Composite Histograms
	Optimizer Support for Hash Joins

	Locking System Performance Improvements
	Preallocated RSB/LKBs
	Miscellaneous Locking System Improvements

	Logging System Performance Improvements
	Buffer Manager Performance Improvements
	Operating System Integration
	64-Bit Operating Systems
	Operating System Thread Implementation on Linux

	Ingres ICE Enhancements
	Development Environment

	ODBC Enhancements
	Supported Functions
	Unavailable Features

	JDBC Enhancements
	Support for Unicode
	New Character Sets to Support Euro Currency Symbol

	Appendix F: Features Introduced in Ingres II 2.5
	Sort Enhancements
	QEF Sort Enhancements
	DMF Sort Enhancements
	Parallel Sort Techniques

	ANSI/ISO Constraint Enhancements
	Large Cache Support
	Dynamic Write Behind Threads
	Partitioned Transaction Log File
	Optimizer and Optimizedb Enhancements
	Read-only Database Support
	New SQL Functionality
	Order By/Group By Expression
	CASE Expression
	Parallel Index Creation
	SELECT Enhancement
	Bit-wise Operator Support
	Aggregate Functions
	Miscellaneous Functions

	Extended Date Support
	Large File Support
	Large Catalogs
	Row Locking for System Catalogs
	Update Mode Locking
	Value Locking for Serializable Transaction with Equal Predicate

	Query Optimization and Execution Enhancements
	Ingres Star Features
	Ingres Net Features
	Ingres ICE Features
	Security
	Session Management
	Storage Management
	Macro Language Extensions

	Visual DBA Features
	Replicator Enhancements
	Generic Replicator Server
	Increased Replicator Concurrency

	OpenAPI Enhancements

	Appendix G: Features Introduced in Ingres II 2.0
	Variable Page Size
	New Page Format for Larger Page Size

	Larger Tuple Support
	Distributed Multi-Cache Management
	Enhanced Performance of Locking/Logging and Buffer Manager
	Interval Based Deadlock Detection
	Row Level Locking and Transaction Isolation Levels
	Alter Table Support
	Async I/O Support
	Parallel Backup and Restore
	Parallel Checkpointing to Disk
	Parallel Checkpointing to Tape
	Parallel Rollforwarddb from Disk
	Parallel Rollforwarddb from Tape

	Fast Load Support
	R-tree Support: A Spatial Index for Ingres II 2.0
	Spatial Data Types and Operators
	Statement Level Rules
	Temporary Tables as Procedure Parameters
	Other Optimizer Enhancements
	Operating System Thread Support
	Table Cache Priorities
	Transaction Access Mode
	Soundex Function
	Ingres Star Features
	Ingres Net Features
	Protocol Bridge Support
	Data-Stream Compression Support
	SNA Duplex Support
	DECNet/OSI Support

	Ingres OpenAPI Enhancements
	Multi-Threaded OpenAPI
	OpenAPI Support for Autocommit
	Enhanced OpenAPI Support for Database Events

	Ingres ICE Features
	Visual DBA Features
	Server-based Replication

	Index

