
Planning and PerformingPlanning and Performing
Your UpgradeYour Upgrade

A Practical Guide
(Cookbook)

 For Ingres Users

Ingres® II

Page 1

Table of Contents
DISCLAIMER 2

CREDITS 2

INTRODUCTION TO INGRES II 3

PLANNING YOUR UPGRADE 3

HARDWARE ISSUES
PLANNING, TESTING AND IMPLEMENTATION 4

APPLICATION ISSUES 5

TYPE OF UPGRADE 6

GETTING STARTED 7

INITIAL APPLICATION PREPARATION 8

LOADING THE INGRES II DEVELOPMENT INSTALLATION 10

MOVING DATABASES 11

ADDITIONAL APPLICATION PREPARATION 12

SYSTEM ADMINISTRATION PREPARATION 16

THE UPGRADEDB UPGRADE - A QUICK OVERVIEW 21

THE UPGRADEDB UPGRADE PROCEDURE 21

UPGRADEDB PROBLEMS 35

THE UNLOAD/RELOAD UPGRADE: OVERVIEW 40

THE UNLOAD/RELOAD UPGRADE 41

OI_PREP.SH SHELLSCRIPT 52

RESERVED WORDS 58-76

Page 2

Disclaimer
The Ingres II Migration Guide is intended to offer procedures that provide
guidance to Ingres 6.4 users upgrading to Ingres II. Ingres II is the fourth release
of Ingres since version Ingres 6.4, and many new features and capabilities are
included. The procedures in this Migration Guide have been tested and are as
comprehensive as is possible. However, since no Ingres installation and
environment is ever identical, no migration guide can be 100 percent complete.
Keep in mind that the information in this guide is not a replacement for thought,
and use caution and common sense when performing upgrades at your site. The
number one rule you should always consider is to make sure you understand
what you are trying to accomplish with each step, and make sure you have a
plan in case something should go wrong. Carelessness can result in loss or
corruption of data, but with careful planning and execution, you can maximize
your chances for an easy migration that will increase the performance and
capabilities of your Ingres-based systems.

 1998 Computer Associates International, Inc., One Computer Associates
Plaza, Islandia, New York 11788-7000. All rights reserved.
All product names referenced herein belong to their respective companies.

This document is for your informational purposes only and is subject to change
or withdrawal by Computer Associates International, Inc. (“CA”) at anytime. CA
is not responsible for typographical errors or technical inaccuracies. This
document is provided with “Restricted Rights” as set forth in 48 C.F.R.
Section12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section
252.227.7013
(c)(1)(ii) or applicable successor provisions.

THIS DOCUMENT MAY NOT BE COPIED, REPRODUCED OR DUPLICATED
WITHOUT THE PRIOR WRITTEN CONSENT OF CA.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS
DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING
WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF
MERCHANTIABILTY, FITNESS FOR A PARTICULAR PURPOSE OR
NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END
USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR
INDIRECT, FROM THE USE OF THIS DOCUMENT, INCLUDING WITHOUT
LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL OR
LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED OF SUCH DAMAGES.

THE USE OF ANY CA PRODUCT REFERENCED IN THIS DOCUMENT IS
GOVERNED BY THE END USER’S APPLICABLE LICENSE AGREEMENT.

Credits
Special thanks to Karl Schendel and the Ingres Development and Support
Teams for their hard work and dedication to Ingres and this Migration Guide.
This guide has been reviewed and approved by Computer Associates
International Inc.

Page 3

Introduction to Ingres II
Ingres II is the only complete solution for n-tier relational application
development and information management. Integrated with an industrial-
strength RDBMS, Ingres II provides a full suite of options that offer
enterprise access to existing data, replication, internet commerce
capabilities, and a unique application development environment -
OpenROAD. Ingres II offers unique solutions across Microsoft
Windows NT, OpenVMS, and a variety of UNIX platforms.

Planning Your Upgrade
The most important thing you can do is thoroughly plan for your upgrade
before you start. This manual, together with the online documentation
set included on your Ingres II Enterprise Edition CDs will assist you in
planning and executing a successful upgrade. With detailed planning,
potential problems will become evident, allowing you to plan for them ahead
of time, and be proactive in their prevention. Problem prevention is the key
to any easy hardware or software upgrade.

Testing your plan, preferable with a copy of real data, will focus your
attention on any areas that might cause problems during the live
upgrade on your production systems. Implementation should not begin
until all preliminary testing is complete. These procedures are basically
common sense, but are often overlooked.

Create a checklist, items as simple as: How long to prepare and
complete an up-to-date backup; and How to ensure that all data is
complete (no bad tapes); are issues that need to be dealt with.

The best strategy for doing an upgrade is to implement any compatibility
fixes in your Ingres 6.4 environment first. Once your databases and
applications are Ingres II ready, you test them in an Ingres II installation,
practice the upgrade, and then do the live upgrade. Use of any of the
new Ingres II features are deferred until after the live upgrade is
successful. This way, you minimize the number of variables at each step,
and maximize your chances for immediate success.

Page 4

Hardware Issues - Planning, Testing and
Implementation

In order to do a safe and orderly upgrade, you will need at least three
Ingres installations (four preferred); your live production; your Ingres 6.4
development installation; an Ingres 6.4 installation for testing the
upgrade; and an Ingres II development installation for preparing and
testing your applications.

You need someplace safe to put these installations. Try to keep them off
your production machine, if at all possible. If you have no available
computer for preparing and testing your upgrade, you might consider
temporarily getting one. It is possible to do everything on one machine,
but it is more difficult and riskier.

The minimal hardware setup recommended is three machines:
development, test, and production. Initially all three should have
Ingres 6.4 installations. Install a separate Ingres II installation on
development, and get everything working there. Then you upgrade the
test machine (perhaps more than once!) for practice, and to make sure it
all works. Then you upgrade the live machine.

Another alternative involves two machines, development and production.
Install a separate Ingres II installation on development, and get
everything working there. Then upgrade the Ingres 6.4 installation on
that machine (perhaps more than once!) for practice, and to make sure
it all works. Then you upgrade the live machine. (Although it is possible
to do everything on one machine, using three different Ingres
installations. This is not recommended. It is too easy to do something in
the wrong installation.

Of course, you can also use four machines, separating the Ingres 6.4
and Ingres II development machines. This might actually be too much of
a good thing, as there tends to be a lot of back-and-forth between the
Ingres 6.4 and Ingres II installations, especially in the late stages of
testing and compatibility fixing.

A minor hardware-related point: there is no remote installation procedure
for Ingres II. If your machines do not have local media support (CD-ROM
or tape), you will have to arrange it; or be prepared to copy around the
distribution tar file from a central point.

TIP
BACKUP ALL

DATA BEFORE

YOU BEGIN.

PRACTICE
TIP

EXPECT TO

HAVE

INGRES 6.4
DEVELOPMENT

CEASE WHILE

YOU PRACTICE

THE INGRES

6.4 TO INGRES

II UPGRADE IN

THAT

INSTALLATION.

Page 5

Application Issues
This may sound silly, but do you know where your applications are?

It is difficult to prepare or test applications if you do not know that they
exist. It is very easy to concentrate on the big, mission critical
applications and miss a tiny little database -- used by the president's
executive secretary.

Take an application and database inventory before you start, and make
sure you know how to rebuild every application. If you find an application
that you can not rebuild for some reason, be sure to test it under Ingres II
as soon as possible. Sometimes it is possible to run an Ingres 6.4
application image against an Ingres II database, but only if that
application has no upward compatibility issues. You may find yourself
recreating that application from scratch, or doing without it.

If your site is doing active application development, you have another
worry, which is how to coordinate new development with Ingres II
compatibility fixing. Generally it is best to try to synchronize the test and
live upgrades with an appropriate time in your application enhancement
cycle. For example, one product-oriented site addressed this issue by
synchronizing Ingres II compatibility with a code release; then,
development was converted to Ingres II, while a Ingres 6.4 "bugfix"
installation was kept around on a different machine for maintenance
purposes.

Page 6

Type of Upgrade
You have two options for doing your live upgrade: the use of the
upgradedb utility, or an unload-reload. You can mix the two, upgrading
some databases while reloading others. In fact, unless you do a cold
Ingres re-install, you will upgradedb the iidbdb even if you decide to
unload-reload the user databases.

The upgradedb utility upgrades an Ingres 6.4 database in place, quickly,
and with no additional disk space required. Preparing for a safe and
reliable upgradedb takes some time, though. Specific versions of
upgradedb have some specific areas that must be allowed for.

A database unload and reload ensures that you have a clean start with a
fresh database, although you do need disk space to do the unload and
reload. Depending on what kind of tables you have, you might need
three to five times the space that your Ingres 6.4 database took up. For
instance, compressed tables with wide CHAR or VARCHAR columns can
"blow up" substantially when unloaded. Also, the reload process takes
longer than upgradedb and delays the availability of your installation
after the upgrade.

A database that has been running for years, perhaps living through a
number of system crashes and hardware failures, could have
accumulated damage that might confuse upgradedb. For example, a
database that is used by a small department or group of people, may not
be maintained as well as a production database. To continue this
example, such a database may have junk tables owned by a no-longer-
existing user, with missing table data files. The upgrade procedure given
here is designed to detect and cure as much of this sort of damage as
possible, but it cannot correct for missing data files! If you were thinking
of reloading your database anyway, the Ingres II upgrade might be a
good time to do it.

Various upgrade scenario comparisons have shown that the
unload/reload process is slower (due largely to additional disk activity). If
you suspect data problems for any reason, you might want to perform
the unload/reload. Otherwise, the upgradedb utility is the better choice.

Page 7

Getting Started
Assuming that you have a separate development machine with Ingres
6.4 loaded, your first step is to install Ingres II in a separate installation
on that machine. If you are machine-rich, you could even install Ingres II
by itself on yet another computer, but we will assume that your
development computer will support both an Ingres 6.4 and an Ingres II
installation.

Here's an outline of how to install Ingres II on the development machine.

Create a new ingres directory someplace with enough disk space.

Suppose /ing20/ingres is such a directory.

mkdir /ing20/ingres

chmod 755 /ing20/ingres

Create a couple of scripts called "set64" and "set20" to set your
environment to Ingres 6.4 and Ingres II respectively. Here are example
scripts for the C-Shell. You may have to adjust them slightly for your
installation; for instance, your PATH may need to be slightly different,
and LD_LIBRARY_PATH may be named LIBPATH or SHLIB_PATH on
some platforms.

set64:

setenv II_SYSTEM /ing64/ingres

set path=(. /usr/local/bin /bin /usr/ucb
/usr/sbin

/usr/openwin/bin $II_SYSTEM/ingres/bin
$II_SYSTEM/ingres/utility

/usr/ccs/bin)

set inst=`ingprenv1 II_INSTALLATION`

setenv LD_LIBRARY_PATH /usr/lib:/usr/openwin/lib

set prompt=`whoami`.`uname -n`"[$inst]% "

echo "Switching to Ingres 6.4 [$inst]
installation"

Page 8

set20:

setenv II_SYSTEM /ing20/ingres

set path=(. /usr/local/bin /bin /usr/ucb
/usr/sbin

/usr/openwin/bin $II_SYSTEM/ingres/bin
$II_SYSTEM/ingres/utility

/usr/ccs/bin)

set inst=`ingprenv II_INSTALLATION`

setenv LD_LIBRARY_PATH

/usr/lib:/usr/openwin/lib:$II_SYSTEM/ingres/lib

set prompt=`whoami`.`uname -n`"[$inst]% "

echo "Switching to 2.0 [$inst] installation"

Define aliases (C-shell) or shell functions
(Bourne/ksh) to

source the set64 and set20 scripts.

For instance:

alias set64 source ~ingres/set64

alias set20 source ~ingres/set20

"set20" to the Ingres II environment, and cd to $II_SYSTEM/ingres.
Follow the Ingres II installation instructions to install Ingres II. Don't use
the same data, checkpoint, journal, dump, or log directories as your
Ingres 6.4 installation (although you can use the same disks). For
instance, if the Ingres 6.4 installation uses a data area called /bigdisk,
you might create a directory /bigdisk/ing20 for the Ingres II installation's
data area.

If you are new to Ingres II, now might be a good time to play with a few
of the new Ingres II management functions, such as cbf. You will also
notice that Ingres II looks different in a "ps" listing. It does not use I/O
slaves (unless you are on a platform that does not support OS threads or
asynchronous I/O). The dmfrcp process is replaced by another iidbms
process, the recovery server.

Initial Application Preparation
There are some applications created under Ingres 6.4 that will run
unchanged under Ingres II, but you should not count on this. There are a
number of changes in Ingres II that may require you to change your

Page 9

applications. In general, none of the required changes are particularly
difficult.

The first couple of issues should be checked for right away, before
attempting to move your applications and databases to the Ingres II
development installation.

New Reserved Words
Ingres II reserves a number of new keywords, mostly for support of the
SQL additions implemented by Ingres II. If you used names like "level",
"key", or "comment" as column names, you will need to change them.
See the Ingres II SQL Reference Manual, Appendix A, and the Reserved
Words list included with this document for a complete list of Ingres II
reserved words.

Checking for and fixing reserved word conflicts should be the first thing
you do, since you can not move your databases to the development
Ingres II installations until word conflicts are edited. Remember to check
for Reserved Word conflicts in dynamically created tables and views in
your application code.

Report Writer syntax change
In order to support new syntax, the Report Writer now requires a space
after all dot-commands. Thus, syntax like ".NL3" must be changed to
".NL 3". The following sed command can be used to fix most such
occurrences automatically:

sed -e 's/\([]\.[a-zA-Z][a-zA-Z]*\)\([0-9]\)/\1
\2/' foo.rw | \

sed -e 's/^\(\.[a-zA-Z][a-zA-Z]*\)\([0-9]\)/\1 \2/'
>newfoo.rw

(That's a <space><tab> inside the [] in the first line.)

You should diff the old and new files (foo.rw and newfoo.rw) to make
sure that nothing unexpected happened, such as an unwanted "fix" to a
literal string.

Another way to alter Report Writer files is to sreport them into a
database, then copyrep them back out. This might be the preferred

Page 10

technique if you normally sreport your Report Writer scripts into a
database regularly.

Loading The Ingres II Development
Installation

Once you have gotten this far, you can try copying your database and
applications from your normal development Ingres 6.4 installation into
your development Ingres II installation. (This is where you will do your
initial application checkouts to make sure everything still works under
Ingres II). At this point, you need not carry along much data, since you
probably have more work to do before your applications really work. It
will be useful to carry along a small subset of test data. If you are coming
from an Ingres 6.4/04 or earlier installation, you may need to deal with
this issue as you move your database/application over.

Trailing quote missing from copyapp/copyform output
Ingres 6.4/04 and earlier versions of Ingres would sometimes omit the
trailing quote from format strings when copying out a form. This would
occur with both copyform and copyapp out. There is not much you can
do other than manually fix the output files before copying the forms back
into Ingres II. This does not occur in Ingres 6.4/05 and later versions.

Page 11

Moving Databases
Moving the Ingres 6.4 development database from Ingres 6.4 to Ingres II,
if you do not already have procedures for moving databases around:

s "set64" and cd to a directory with enough space to hold the data.
Remember to allow for the front-end catalogs.

s Run unloaddb against your Ingres 6.4 database. Run unload.ing to
dump out the front-end catalogs and your data.

s Edit the cp_ingre.in file and remove the line:
\include /ing64/ingres/files/iiud64.scr
(Your directory path will probably be different.)

s "set20" to the Ingres II installation. Create the database there, but
without any front-end catalogs:
createdb databasename -f nofeclients

s Edit the reload.ing script if the Ingres II database name is not the
same as the Ingres 6.4 database name. Then, run reload.ing.

At this point the front-end catalogs in the Ingres II database are in the
Ingres 6.4 format. To get them into Ingres II form, run upgradefe:

upgradefe databasename INGRES

The above assumes that you intend to copy the data in the Ingres 6.4
development database to Ingres II as well as the catalogs. If you do not
want the data, you can edit the scripts that unloaddb creates so as to not
do the COPY INTO of some or all of the tables.

Be sure to review the output of the reload into the Ingres II database. If
you have any reserved word conflicts with the Ingres II Reserved Words,
they will show up in the reload. Fix the Reserved Words on the Ingres
6.4 side, then try again.

reload.ing
TIP

TEE THE

OUTPUT TO A

LOG FILE IN

CASE ANY

ERRORS

OCCUR; YOU

MAY RUN INTO

RESERVED

WORD

PROBLEMS.
RELOAD.ING
|& TEE

/SOMEPLACE/R
ELOAD.LOG

Page 12

If you have Star databases, remember to do a regular unloaddb on the
CDB, and an unloaddb /star on the DDB. (The CDB is the coordinator
database, the one that usually starts with "ii". The DDB is the distributed
database, the one you usually access by saying ddbname/star.) The
unload of the DDB will unload all registrations and distributed view
definitions; it does not generate any table data. The unload of the CDB
will unload any locally stored tables that do not exist in other local
databases.

Additional Application Preparation
After successfully creating databases and applications in the
development Ingres II installation, continue checking for these
application issues:

UPDATE FROM semantics change
The test if ambiguous replace in Ingres up through Ingres 6.4/05 allowed
the update as long as each target row was being updated with an
unambiguous value. Ingres II (and Ingres 6.4/06 and later) tests for
multiple FROM rows instead, and generates an ambiguous replace even
if all the FROM rows generate the same replacement value. For
instance, consider the (nonsense) query:

UPDATE foo FROM iitables

SET thing = 1;

Ingres 6.4/05 and earlier would allow this, even though there was no
WHERE qualification joining the tables, since the replacement value was
non-ambiguous. Ingres II will produce an Ambiguous Replace error.

Probably the best way to handle this, is to review all applications for
potentially ambiguous updates and change them to use EXISTS or IN,
instead of a join. If this is not feasible, the old UPDATE FROM handling
can be restored by using CBF to set the DBMS parameter
"ambig_replace_64compat" to ON.

Page 13

Decimal constant semantics change
With the introduction of the DECIMAL data type, fixed point literals such
as 1.0 are now considered DECIMAL, rather than FLOAT. Normally, this
does not matter, as Ingres does appropriate type conversions. In one
instance it is important, though, and that is when you are doing a
CREATE TABLE .. AS SELECT with a constant in the SELECT result
list. For example:

CREATE TABLE foo AS

SELECT thing1, thing2, num_thing = 1.0

FROM bar;

In Ingres 6.4, the num_thing column is created as FLOAT8. In Ingres II,
though, a DECIMAL(2,1) column is created, which will easily overflow.

Again, the best way to handle this, is to examine uses of fixed-point
constants in your applications and change them to floating point
constants (1.0e0, for instance), or add an explicit FLOAT8 type
conversion. A less thorough but much faster alternative is to set the
environment variable II_NUMERIC_LITERAL to FLOAT.

setenv II_NUMERIC_LITERAL FLOAT

This tells Ingres II to interpret fixed-point constants as floats, not as
decimals. If you decide to depend on II_NUMERIC_LITERAL, be aware
that you will have to arrange for EVERY user of the application(s) to set
II_NUMERIC_LITERAL in their environment.

Greater sensitivity to BYREF errors
Ingres 6.4 4GL programs were relatively insensitive to length and type
errors when returning BYREF values to a calling program, particularly
when a 3GL routine was called. Ingres II is more sensitive to returning
values that are too long, or are of the wrong type; in some cases errors
of this nature can result in program aborts and coredumps. The only cure
is to correct the called routines so that they return values of the correct
type, and don't try to return longer values than the calling program
expects.

Page 14

Journaling ON by default
In Ingres 6.4, even if a database was journaled, you had to explicitly say
WITH JOURNALING to get a newly created table to be journaled. In
Ingres II, journaling is on by default. This means that if you application
creates (and drops) temporary tables as it runs, those tables will be
journaled, wasting system resources and possibly making the Ingres II
installation run more slowly than expected.

It is possible to turn the default for journaling to OFF by changing a CBF
parameter (default_journaling). This might be a good solution for
carefully controlled environments. Another option is to issue a SET
NOJOURNALING statement at the beginning of applications that create
temp tables, or to make sure that temp tables are created WITH
NOJOURNALING.

Greater sensitivity to arithmetic errors
Ingres 6.4 would ignore a number of arithmetic error conditions - such as
floating point overflow or divide-by-zero. Ingres II is more careful to
report arithmetic errors properly on all platforms. If your application starts
generating arithmetic exceptions when tested with Ingres II, it is an
indication that the application code had problems previously, and needs
to be corrected.

Free-space management pages
Ingres II adds a couple new non-data pages to all tables, including heap
tables. These pages support improved free-space management by
Ingres II. Normally this is not an issue. For most users this will not be an
issue, however if you application works closely with TIDs, you may need
to change your application to expect gaps in the TID page number
sequence. Working with TIDs in this fashion is not recommended.

4GL TABLE_KEY type conversions
Conversion of 4GL VARCHAR variables to the TABLE_KEY type gives
length errors. Avoid this by converting to char first:

TABLE_KEY(CHAR(varcharVariable))

Page 15

User Defined Datatype changes
If you are using the Object Management Extension and declaring your
own User Defined datatypes in the server, there were some changes in
calling sequences. Read the Ingres II Object Management manual for
details.

Report Writer runtime parameter errors
This is not really an application issue, but it looks like one. If you attempt
to pass parameter strings containing quotes to the Report Writer, you
may experience mysterious looking runtime parameter errors. This can
be caused by a quote change to the UNIX command parameter passing
control file, utexe.def. If this occurs it may be simplest to restore the
original utexe.def file quoting, as follows:

Edit $II_SYSTEM/ingres/files/utexe.def

Do a search for the string '(%S)'

Change it to: param '(%S)'

Save the file and see if the error goes away.

Remember that most of the changes required to prepare for Ingres II are
backward compatible to Ingres 6.4. It is prudent and desirable to make
the application changes in the Ingres 6.4 installation, and bring them
forward to the Ingres II installation for testing. This way you do not have
to freeze development while preparing the applications, and you have
maximum flexibility.

It is very tempting to slip in some Ingres II-only code as you are
reviewing your applications or addressing compatibility issues. Resist the
temptation! While an outer join or a session temp table in a crucial place
may do wonders for performance, there is plenty of time to add speed
after the upgrade.

Page 16

System Administration Preparation
A number of Ingres II upgrade issues involve system or Ingres
administration. You will need to coordinate these changes with your
system administrator.

Shared library search path
Ingres II uses shared libraries on many UNIX platforms. Since there is no
standard default installation directory for Ingres II, you will have to tell
applications and tools where Ingres II was installed on YOUR machine
so that the shared libraries can be found. Generally, this is done in one
of two ways: LD_LIBRARY_PATH (or equivalent), or linking to /usr/lib.

You can choose to define the LD_LIBRARY_PATH environment variable
to include the Ingres library directory, $II_SYSTEM/ingres/lib. Some
platforms use the variable name SHLIB_PATH or LIBPATH instead of
LD_LIBRARY_PATH. All users who access any Ingres programs or
applications will have to define LD_LIBRARY_PATH. Failure to have
LD_LIBRARY_PATH set will result in an error message that looks
something like this:

ld.so.1: /ing20/20/ingres/bin/tm: fatal:

libframe.1.so: open failed: No such file or directory

It does not hurt to include $II_SYSTEM/ingres/lib in LD_LIBRARY_PATH
for Ingres 6.4, so your system administrator can get started on this
change as soon as possible.

A more secure and generally easier way of accessing the shared
libraries is to link them into /usr/lib. For example:

ln -s /ing20/ingres/lib/libframe.1.so /usr/lib

This does not require any application wrappers or user environment
changes. The downside of this approach is that your system
administrator has to individually link each Ingres library. You also have to
review the links after each Ingres II upgrade in case libraries were
added, removed, or renamed.

Page 17

UNIX kernel parameters
You should review your UNIX kernel parameter settings, in particular the
maximum shared memory size. Ingres II builds a larger locking and
logging shared memory segment than Ingres 6.4 did; you will probably
need to increase the maximum shared memory segment size. Allowing a
40-Mb shared memory segment will accommodate most migrated
installations. Each platform has its own way of modifying the shared
memory limits; see your system administrator or your platform specific
release notes.

Ingres startup and shutdown
Ingres II uses slightly different startup and shutdown commands (ingstart
and ingstop instead of iistartup and iishutdown). If you have shellscripts
that start and stop Ingres (perhaps at system boot-up and shutdown
time), you will have to change them. Use your development Ingres II
installation to verify the changes, and have the revised scripts ready for
live upgrade time.

ingprenv replaces ingprenv1
In Ingres 6.4, the ingprenv1 command displayed one Ingres environment
variable. This command no longer exists in Ingres II; you use ingprenv
instead. You will need to prepare revised versions of any shellscripts that
you might have that use ingprenv1, and have them ready for live
upgrade time - or, create your own ingprenv1 that just calls ingprenv; for
example:

echo 'exec $II_SYSTEM/ingres/bin/ingprenv $*'
>/usr/local/bin/ingprenv1

chmod +x /usr/local/bin/ingprenv1

System monitoring shellscripts
Many mission critical production systems will have some kind of system
monitoring in place to provide the system administrator with an early
warning of Ingres problems. If your installation wrote homegrown Ingres
monitoring shellscripts, you will have to review them to see if any
changes are needed for Ingres II. Some of the sorts of things to watch
out for are:

Page 18

s Checking for iislaves (no more slaves on many platforms).

s Checking for specific lockstat or logstat fields (they may have moved
or may look different).

s Checking II_RCP.LOG or II_ACP.LOG (these have been renamed to
iircp.log and iiacp.log).

s Checking Ingres 6.4 style parameter files such as rundbms.opt (all
Ingres II parameters are in config.dat now).

In addition, you will have to check for issues already mentioned,
including the need for LD_LIBRARY_PATH and the use of ingprenv1. If
you are using a commercial monitoring system of some sort, contact the
vendor to see if you need any updates to support Ingres II.

Checkpoint template changes
The Ingres II checkpoint template file (cktmpl.def) is similar in structure to
the Ingres 6.4 version, but it is considerably expanded and not directly
compatible. If you have made any changes to your Ingres 6.4 checkpoint
template, you will have to recreate those changes for Ingres II. You can
use your Ingres II development installation to develop your new
cktmpl.def, and it will be ready for your live upgrade. Chapter 17 of the
Database Administrator's Guide discusses the new format of the
checkpoint template file.

If you have modified your Ingres 6.4 checkpoint template to do parallel
checkpointing of multiple locations, be aware that Ingres II supports
parallel checkpointing directly; you may be able to simplify your
checkpoint processing considerably.

Archiver exit shellscript
Ingres II comes with a sample archiver exit script, called acpexit.def, but
does not install it. If you have a custom acpexit from Ingres 6.4, or if you
want to install the sample, you have to do this manually after the
upgrade. Refer to Chapter 6 of the System Reference Guide for
information about the acpexit script.

Page 19

Transaction log size
Generally, Ingres II does not use as much transaction log space as
Ingres 6.4 does. There are a few operations that use more, though (such
as MODIFY TO MERGE), and in addition the force-abort limit cannot be
set as close to log-full as was possible in Ingres 6.4. If your Ingres 6.4
transaction log was just barely large enough in Ingres 6.4, you may want
to expand it somewhat when you move to Ingres II. Your system
administrator will appreciate as much warning of this as possible,
especially if the log is a raw log.

Backup and Restore
As part of the upgrade, whether done with upgradedb or unload/reload,
you will need a system backup. If something goes wrong, you will need
to restore that backup. Make sure you or your system administrator
knows HOW to take a complete system backup, and how to restore that
backup. This sounds crazy to most people; but the panic after a botched
upgrade is not the time to be pulling out the man page on your platform's
restore command. Nor is it the time to discover that your tape drive can
no longer read the tapes it is writing. Check your hardware before you
run the live upgrade.

Testing And Practicing
As you make application changes for Ingres II compatibility, you should
periodically bring the changes over to the development Ingres II
installation and test the application. The amount of testing you do is up
to you, but at the very least you should test the mission critical
application functions. It would be prudent to test with a reasonable
amount of data (a few thousand rows, say, not just one or two).

If testing resources are available, more testing is always better. Since
resources are not often available, it becomes more cost effective to plan
to react to bugs and incompatibilities instead of trying for 100 percent
test coverage. The key word here is plan. Have bug-fixing resources in
place for several days after the upgrade. Avoid new feature development
for those few days. Have modified or short-circuited change control
procedures ready so that you can move quickly if a problem crops up.

Page 20

Make sure you test your system administration procedures, too. At
minimum, you should crash your test Ingres II installation when it is busy
(pull the power plug, or use kill -9 to crash the servers). Make sure that
everything recovers properly. Do at least one rollforwarddb of your most
important database(s) and make sure it works in your environment.

When your applications are reasonably Ingres II ready, you can try
running an upgrade. Your first upgrade attempt should be done on a test
Ingres 6.4 installation; one that can be out of service for a day or two,
and ideally one on a separate computer. You will almost certainly want to
practice the upgrade more than once, so an isolated environment is
desirable.

As you do each practice upgrade, take notes on what went wrong or
what you would do differently. Keep doing practice upgrades until you do
not take any more notes! Give your annotated upgrade procedure to
someone else and let him or her run through an upgrade.

Your first Ingres II upgrade may well be difficult and scary; your third or
fourth will be easy. You do not need a complete live dataset to get a
valid upgrade practice session. You should however have at least some
data, so that you have an idea of how long the upgrade will take.

As you approach the date for the live upgrade, you should delete ALL
application objects and images from the development Ingres II
installation and re-image a fresh copy of everything, from scratch.
Subject this fresh copy to at least a quick critical-functions test. Use this
build for your live upgrade.

Page 21

The Upgradedb Upgrade - A Quick Overview
The upgrade using upgradedb transforms your database in-place from
an Ingres 6.4 to an Ingres II format. This is a complex process due to the
large number of enhancements made. Upgradedb has presumably been
carefully written and tested, and thus most sites ought to be able to use
it without any special preparation.

The idea behind the following upgradedb procedure is that the less work
upgradedb does, the better. So, each database is prepared by dropping
all easily recreate-able objects --essentially, dropping everything but the
base tables. Additionally, each base table is checked to make sure it is
valid and has no internal damage. After Ingres II is installed and
upgradedb run, the various database objects are recreated.

The procedure allows you to cut and paste the output of an unloaddb run
to generate SQL that recreates database objects and storage structures.
If your site already has canned procedures that recreate database
objects and storage structures, feel free to use them instead. Just make
sure that your procedures recreate ALL the relevant objects. If users or
applications can create new database objects, remember them; you
might be better off using unloaddb cutting/pasting in that case.

The upgradedb procedure assumes that you can become any user who
owns objects in any database (via login or su). If this is not feasible, you
can run as user ingres, and use the -u{user} flag to pretend to be that
user any time you have to run an Ingres command.

The Upgradedb Upgrade Procedure
In this procedure, the notation [Each DB] (use standard conventions)
means: "For each database, not including the iidbdb: Become the DBA
user for that database; cd to the unload directory for that database that
you create in step 1; and do this step." Do not include the iidbdb or Star
distributed databases in the list unless instructed. If you are using Ingres
Star, remember to include the CDB in the list of databases. (The CDB is
the coordinator database, the one that usually starts with "ii").

Page 22

Step 1. [Each DB Including Star DDBs] Create Unload Directories
Create a directory for each database. You will use this directory for
holding various scripts (but no data), so you will not need much disk
space. A megabyte per directory is generous. Make the directory world
writeable.

mkdir /someplace/dbname

chmod 777 /someplace/dbname

Step 2. [Each DB Including Star DDBs] Run Unloaddb
Run unloaddb against each database. Remember that unloaddb will not
unload any data, it just creates copy-in and copy-out scripts. You will
take those scripts apart later, giving you a collection of scripts that
recreate the various database objects and storage structures. Ingres-
STAR note: You do a regular unloaddb of the CDB, but an unloaddb
/star of the DDB.

unloaddb dbname (regular db or CDB)
unloaddb ddbname/star (STAR distributed db)

Steps 2 through 4 can be omitted if you already have your own canned
procedures to recreate all database objects and storage structures in all
databases. You will also have to make the appropriate changes to
oi_prep.sh for remodifying all tables.)

Step 3. [Each DB Including Star DDBs] Bogus User Check
Examine the unload.ing and reload.ing scripts that unloaddb created.
Each script contains one line for any user who owns a database object.
Make sure that all the users listed are valid; old databases may well have
junk objects created by users who are no longer around.

If you find any obsolete users, delete those lines from unload.ing and
reload.ing; delete the cp{user}.in and cp{user}.out files; and you might as
well go into the database itself and clean out the junk objects.

Page 23

Step 4. [Each DB] Munge Unloaddb Output
The unloaddb output needs to be modified for recreating just the
database objects and storage structures.

Edit each cp{user}.in file EXCEPT the cp_ingre.in file. Starting at the
end, you will see a block of CREATE RULE statements; extract them all
into one file named {user}_rule.sql. Next are CREATE PROCEDURE
statements; extract them all (and their accompanying GRANT
statements, if any) into one file named {user}_dbp.sql. Next are CREATE
DBEVENT statements and associated GRANTs; extract them into
{user}_event.sql. Finally extract all CREATE VIEW, QUEL DEFINE
VIEW, and associated GRANTs into {user}_view.sql. This step is best
done manually with a text editor.

For each user with a cp{user}.in file, extract all the modify statements
into a file, and all modify plus all create index statements into another.
This can be done using the commands:

sed -n -e '/^modify/,/\\p\\g/p' cp{user}.in
>{user}_modify.sql

Use standard CA syntax conventions
cp {user}_modify.sql {user}_modindex.sql

sed -n -e '/^create index/,/\\p\\g/p' cp{user}.in
>>{user}_modindex.sql

When you are done with this step, you should have SQL scripts that can
recreate any database object and storage structure (except base tables)
owned by any user in any database.

Step 5. [Each DB Including iidbdb] Optional Checkpoint
Checkpoint each database with ckpdb. This step is optional, since you
are going to take a system backup and another checkpoint later. Play it
safe and have a valid, recent checkpoint on that backup tape, though.
Remember to checkpoint the iidbdb.

Step 6. Disable User Access
From here through the end of the upgrade, you need to turn off user
access to any database. How you do this is up to you: prevent user
logins, pull the network cable out of the box, whatever works for you.

Page 24

Step 7. Ingres-Down System Backup
Shut Ingres down. This MUST be a clean shutdown, leaving no
information in the Ingres transaction log to be redone or aborted later.
One way of doing this is to shut Ingres down. Then start it up and shut it
down again. Then check the recovery process log (II_RCP.LOG) for
"RCP Shutdown completed normally".

Now, take a system backup, using whatever dump command is
appropriate to your platform. You MUST make sure you include all Ingres
directories: data, checkpoint, journal, dump areas, and the
$II_SYSTEM/ingres directory containing Ingres files and executables.
Remember to save your application directories too, as they contain
Ingres 6.4 applications. Watch out for symbolic links and cross-mounts,
especially in an older installation; make sure you are saving real data
and not a symbolic link. Older installations which have been through
disk-space panics may well have various Ingres related areas linked to
unexpected places.

If you normally start up Ingres at boot time, include the root filesystem in
your backups. Or, at least make a manual copy of any Ingres boot time
startup and shutdown scripts.

To play it safe, do this step in single-user mode, after cleaning the tape
drive. Using brand new, never-used tapes. Do this twice and check the
tapes after backups to insure that you can read them.

After your backup is finished, start up Ingres again.

Page 25

Step 8. [Each DB] Optional Statdump
Only do this step if you are pressed for time and can not run a full
optimizedb run against the database when the upgrade is done. You can
dump out the existing optimizer statistics and reload them after the
upgrade. You will not get some of the new Ingres II metrics this way, but
it is better than nothing. If you have enough time to run optimizedb
against your databases, it is preferred that you omit this step, and run
the optimizedb.

Run statdump with the -o flag to a file for each database:

statdump -o dbname.stats dbname

Step 9. [Each DB] Object Cleaning
Drop all non-table objects from the database: optimizer statistics, views,
rules, database procedures, and dbevents. In addition, re-modify all
tables to verify their validity, and run some verifydb checks against the
database. You can use the shellscript provided at the end of this Guide
(see oi_prep.sh) to do the work automatically. Using the C-shell:

oi_prep.sh dbname |& tee oi_prep.log

If your database has dependent views, you will probably see some
DROP errors on those views. (oi_prep.sh does not bother to drop views
in reverse dependency order.) Ignore those DROP errors.

The verifydb -odbms command will very likely output a bunch of
messages of the forms:

 S_DU1611_NO_PROTECTS iirelation indicates that there are
protections for table (owner), but none are defined.

 S_DU0305_CLEAR_PRTUPS Recommended action is to clear
protection information from iirelation, and S_DU1619_NO_VIEW
iirelation indicates that there is a view defined for table (owner), but none
exists.

S_DU030C_CLEAR_VBASE Recommended action is to clear view base
specification from iirelation.

Page 26

You may safely ignore both of these kinds of messages. Also ignore the
"patch warning" message that warns of the loss of user tables in the
RUNINTERACTIVE mode as you are not using this mode.

Some databases (especially older ones) may produce a bunch of
messages from verifydb, then output a "verifydb failed" message with no
explanation and exit. If this happens, run the Terminal Monitor with the
update system catalogs flag:

sql +U dbname

SELECT * FROM iistatistics;\go

You should not see any rows. If you do, they are likely the cause of the
verifydb problem. Simply delete them:

DELETE FROM iistatistics;COMMIT;\go

\quit

Re-run the verifydb command at the end of oi_prep.sh and make sure
you do not get any errors.

If you see any other error messages from verifydb, you will have to stop
and correct the system catalog problems before continuing. Contact
Tech Support for help if necessary.

Do not process Ingres Star distributed databases. These should be
upgraded as-is.

Step 10. [Each DB] Record INFODB
Run infodb against each database, saving the output. You will want this
later mostly so that you know whether the database was journaled or
not, and if something goes wrong you'll know what data locations the
database lives in, and what order they are in.

infodb dbname >infodb.out

Page 27

Step 11. Clean iidbdb
Become user ingres, and run a subset of the Object Cleaning step
against the master database iidbdb. We'll assume that there are no user
created objects in the iidbdb to deal with (there shouldn't be!).

statdump '-u$ingres' -zdl iidbdb

sysmod -s iidbdb

verifydb -mrun -sdbname iidbdb -opurge

verifydb -mrun -sdbname iidbdb -odbms

You may get some warnings from verifydb that should be ignored. See
Step 9 (Object Cleaning) for details.

Step 12. [Each DB Including iidbdb] Checkpoint -j
Checkpoint each database now that they have been cleaned up. You
are doing this for two reasons: one, to turn off journaling for all
databases; and two, because if upgradedb has a hiccup, you can use
this checkpoint to recover relatively quickly and try again.

In addition to checkpointing, you should save the config file stored in the
dump area after each checkpoint. Config files are small, and the more
data you save, the more recovery options you have if something goes
wrong.

ckpdb -d -j dbname

cp {dump
location}/ingres/dmp/default/{dbname}/aaaaaaaa.cnf .

Step 13. Record Ingres Configuration
As user ingres, do a "showrcp" command and record the results. Also,
record the contents of the rundbms.opt file in $II_SYSTEM/ingres/files.
You will use this information as a rough guideline for configuring Ingres
II. The Ingres II installation procedure does not preserve your existing
Ingres tuning parameter settings, which is why you should record your
current values now. You are going to delete the ingres/files directory
later, so record this someplace safe.

Checkpoint
TIP

YOU SHOULD

DO THIS FOR

IIDBDB AS

WELL. YOU DO

NOT HAVE AN

"UNLOAD"
DIRECTORY

FOR IIDBDB, SO

JUST STORE ITS

AAAAAAAA.CNF

FILE

ANYWHERE

SAFE.

Page 28

Step 14. Ingres 6.4 Shutdown
Shut down ingres using iishutdown.

Step 15. Disable Ingres Startup
If your machine normally starts Ingres automatically when booting, turn
auto-starting off to avoid auto-starts before you are ready.

On most UNIX platforms, there will be a file in /etc/init.d or /sbin/init.d
that does Ingres startup and shutdown; just put an "exit 0" at the top of
that file. You may have to be root or have your system administrator do
this step.

While you have the system administrator around as a resource, make
sure that your operating system is correctly configured for Ingres II. (See
"System Administration Preparation", page 16.) If you need to reboot to
(say) increase the shared memory limit, you need to do this at this time.

Step 16. Preserve Site Modifications
Many sites install a variety of customizations in their $II_SYSTEM
directory tree. The most common customizations are added or changed
termcap and keyboard map files in $II_SYSTEM/ingres/files. You may
also have customizations in the bin or utility directory. Remember to
check for local collation sequence files. Ideally, save the original collation
definition files; but you should save the compiled files in
$II_SYSTEM/ingres/files/collation as well.

Copy any customized files to a safe place, meaning NOT /tmp and NOT
anywhere underneath the $II_SYSTEM/ingres directory. If you are not
entirely positive that you can identify all customized files, do this: delete
all *.log and *.LOG files from $II_SYSTEM/ingres/files. Then, copy the
entire contents of the $II_SYSTEM/ingres/bin, $II_SYSTEM/ingres/files,
and $II_SYSTEM/ingres/utility directories somewhere safe. This is
copying more than needed, but you can always delete your copy later.
You may not discover you need some strange Vision template or
keyboard map for weeks, as parts of the $II_SYSTEM/ingres directory
tree permanently.

Page 29

If you choose this copy method, this tar command will copy everything
you are likely to need:

cd $II_SYSTEM/ingres

tar cf - bin files utility | (cd /someplace/safe;tar
xf -)

Step 17. Login Fixups
Make sure that the ingres user login sets LD_LIBRARY_PATH (or your
platform's equivalent) if needed, and make sure that it does not use
ingprenv1 (or install your ingprenv1 substitute). See "System
Administration Preparation", page 16. You may want to check all your
database owner (DBA) logins at this point as well to ensure that all users
are properly set up for Ingres II.

Step 18. Record Default Locations
The upgrade runs the smoothest if you delete away the Ingres 6.4
executables and control files, including the Ingres environment variables.
This means that you will have to re-enter your default Ingres locations,
so make sure you know what they are. Do "ingprenv" and record the
values of II_DATABASE, II_CHECKPOINT, II_JOURNAL, and II_DUMP.

Step 19. Clean off Ingres 6.4
Remove the Ingres 6.4 bin, files, lib, and utility directories. This gives you
a fresh start for Ingres II.

cd $II_SYSTEM/ingres

rm -rf bin files lib utility dbtmplt version.rel
admin

Page 30

Step 20. Create Work Location
Ingres II asks you to create an Ingres location for temporary files and
sorting. The installation procedure will create the directories for you.
However, in some situations, the installation procedure may not properly
protect the directories, leading to upgradedb failure on iidbdb. To avoid
this, you may want to consider creating the work location by hand. Refer
to the Database Administrator's Guide, Chapter 5, "Using Work
Locations" for information on placement of your default work location. As
user ingres, assuming a work location of /work:

mkdir /work/ingres /work/ingres/work

mkdir /work/ingres/work/default
/work/ingres/work/default/iidbdb

chmod 755 /work/ingres

chmod 700 /work/ingres/work

chmod 777 /work/ingres/work/default

chmod 777 /work/ingres/work/default/iidbdb

Step 21. Install Ingres II
Refer to the Ingres II installation instructions for your platform. Enter the
directory locations that you recorded in Step 18 (Record Default
Locations) for the default database areas (ii_database, ii_checkpoint,
ii_journal, and ii_dump). During the DBMS server setup, it will ask you if
you want to upgrade all your databases; answer No.

The install procedure will upgradedb the iidbdb anyway; if this fails you
probably have something substantially wrong (See "Upgradedb
Problems", page 35). It is best to get Ingres II entirely set up, then run
through the upgradedb's on the user databases.

If you plan on installing a patch to Ingres II, you should say NO when
ingbuild asks you whether you want to set up Ingres II. Instead, exit
ingbuild. Install the patch using the patch instructions. Then, re-run
ingbuild. Select Current, then SetupAll. By doing this, if there is a fix to
upgradedb or the installation setup in the patch, you will setup with the
fixed version and not the original.

Page 31

Step 22. Restore Site Modifications
If your site modified the checkpoint template cktmpl.def, you need to
recreate your modifications for Ingres II. You can not use the cktmpl.def
from Ingres 6.4, as the file format has been expanded in Ingres II. You
will have to start over, using your Ingres 6.4 modifications as a guide.
Your Database Administrator's Guide has a section on cktmpl.def.

Likewise, if your site uses the archiver exit script acpexit, you need to
modify the template shipped with Ingres II (acpexit.def), and install it as
acpexit in $II_SYSTEM/ingres/files.

Go to your safe place from Step 16 (Preserve Site Modifications), and
restore any files that are specific to your site. In particular, make sure
that you restore any local collation sequence files to
$II_SYSTEM/ingres/files/collation. Re-run aducompile on the sequence
definitions if you have them; if not, you can reuse the compiled collation
sequences from Ingres 6.4 .

Step 23. Start Ingres II
The installation procedure generally leaves the Ingres II servers stopped,
so start them again. Remember that the startup command is "ingstart" in
Ingres II, not "iistartup".

Step 24. Upgradedb
As user ingres, run the command "upgradedb -all" to upgrade all
database. If you have followed the procedure so far, this step should run
without any problems. Refer to the "Upgradedb Problems" section if
something does go wrong; it is very likely that you will be able to fix the
problem and keep going. It's a good idea to log upgradedb's output to a
file; in the C Shell:

upgradedb -all |& tee upgradedb.log

If you make it through this step successfully, relax; the hard part is over,
and you are almost certain to complete the rest of the upgrade without
any problems.

Step 25. Configure Ingres II

Page 32

Run CBF (Configuration-By-Forms) and do a first-cut configuration of
your Ingres II installation. Use the rundbms.opt and showrcp information
you recorded earlier as a guideline. Do not worry about getting things
exactly right the first time; you are mainly trying to get a reasonable
configuration. Refer to your System Reference Guide for information
about CBF and the various tuning parameters.

Step 26. Ingres-Net Setup
If you are accessing Ingres installations remote to this site, run netutil to
recreate the vnode definitions for those remote installations. If you have
NFS client-only installations that you have not set up yet, run ingmknfs to
set them up.

If your platform needs "ingvalidpw" (the setuid-root password checker
program), you should re-create it now by running mkvalidpw. Refer to the
System Reference Guide, or your platform release notes. You can defer
this step until later, unless you are running Ingres Star.

TIP 1: DERIVED PARAMETERS ARE RECALCULATED WHEN VALUES THEY DEPEND ON

ARE CHANGED. IF YOU SET A DERIVED PARAMETER, YOU MAY WANT TO "PROTECT"
IT AGAINST BEING UNEXPECTEDLY CHANGED.

TIP2: INGRES II TENDS TO CALCULATE VERY LARGE LOCK LIMIT AND RESOURCE

LIMIT DERIVED PARAMETERS. THIS IS APPROPRIATE FOR SITES USING ROW-LEVEL

LOCKING, BUT MAY BE EXCESSIVE FOR UPGRADED SITES. CONSIDER CUTTING

THESE LIMITS BACK CLOSE TO INGRES 6.4 LEVELS.

TIP 3: ON OS-THREADS PLATFORMS, DO NOT TURN ON ASYNC_IO; AND DO NOT

DECLARE THE II_NUM_SLAVES INGRES VARIABLE.

TIP 4: INGRES II CAN SUPPORT LARGER QEF_SORT_MEM VALUES THAN INGRES

6.4. INGRES II DOES NOT NEED AS MUCH QSF_MEMORY AS INGRES 6.4 DID. OS-
THREAD PLATFORMS SHOULD NOT REDUCE QUANTUM; UNLIKE INGRES 6.4,
REDUCING QUANTUM ON OS-THREAD PLATFORMS WILL NOT IMPROVE

RESPONSIVENESS.

Page 33

Step 27. [Each DB] Recreate Objects
For each {user}_view.sql script generated by Step 4 (Munge Unloaddb
Output), recreate those views:

sql -u{user} dbname <{user}_view.sql

In the same way, recreate all dbevents, database procedures, and rules
in that order.

Step 28. [Each DB] Reapply Storage Structures
For each {user}_modindex.sql script generated by Step 4 (Munge
Unloaddb Output), reapply storage structures and indexes:

sql -u{user} dbname <{user}_modindex.sql

It is essential to redo secondary indexes, since they were dropped by the
oi_prep.sh preparation. It's highly desirable, but not absolutely essential,
to redo all the table modifys as well. If you are extremely short of time,
you can omit the modifys and just do the create index statements. (You
can also consider dividing up the input {user}_modindex.sql files, and
running multiple sessions at once. Even a uniprocessor system can
benefit from running two modify sessions simultaneously.)

Step 29. [Each DB] Reapply Optimizer Statistics
Run whatever your normal procedure is for generating optimizer
statistics with the optimizedb command. If you are short of time, and you
dumped out your Ingres 6.4 statistics in Step 8 (Optional Statdump),
read the Ingres 6.4 statistics back in:

optimizedb dbname -i dbname.stats

Ingres II computes some additional statistics for better query
optimization, so it is better to re-run a regular optimizedb. Ingres 6.4
statistics are better than nothing.

Page 34

Step 30. [Each DB including iidbdb] Checkpoint
Checkpoint each database, using the +j flag to turn on journaling if the
database was journaled before. (Refer to the infodb output from Step 10
to see which databases were journaled).

ALWAYS turn on journaling for the master database, iidbdb.

Step 31. Application Upgrade
Install the Ingres II versions of all your applications, using whatever
procedure is normal for your site. Then, restore user logins, and resume
normal operation.

This completes the upgradedb upgrade procedure.

Page 35

Upgradedb Problems
The upgradedb program is complex, and has been afflicted some
peculiarities that have become rather legendary, and have led to some
sites doing unnecessary unload/reload work just to avoid upgradedb.

The procedure given above will avoid most upgradedb problems,
whether real or mythical. Here is a list of problems that you might see
even if you follow the procedure, and how to recover from them. Caveat:
the problems in this list are the result of many upgrades worth of
experience. Not all problems exist in all versions, as CA is naturally
working to resolve as many deficiencies as possible. Non-critical
upgradedb problems tend to languish behind more critical issues,
though, which is why some of these bugs have been around for a while.

Problem 1: "Can't delete database from server."
Upgradedb will sometimes start to upgrade a database, then quit after a
few Converting and Upgrading messages with: "Can't delete database
from server." This will only happen to some databases in an installation,
with no apparent pattern.

This problem was seen in OpenIngres 1.2. The fix is simply to re-issue
the command "upgradedb -all". Apparently no damage is done to the
databases not upgraded, and trying again usually works.

Problem 2: "Duplicate Key" upgrading iidbdb
If upgradedb is re-run after iidbdb is already upgraded, a "Duplicate key
on insert" message appears, followed by scary looking warnings about
iidbdb. The upgradedb then continues normally.

This message is related to upgradefe, which upgrades the front-end
catalogs. The "fix" is to simply ignore the message. No harm is done,
and this problem is corrected in the 9712 genlevel of OpenIngres 2.0.

Page 36

Problem 3: "Product .. has been made uninstallable."
Upgradedb will occasionally print a message "Product <name> has been
made uninstallable by an incompatible dictionary upgrade."

This message is actually related to upgradefe, which upgrades the front-
end catalogs, and this message can be safely ignored. The message
seems to be provoked by some older databases that may have gone
through a failed product installation at some time in the past.

Problem 4: Hang with open() error 13
Upgradedb will start upgrading the iidbdb, then hang part way through
with no obvious message. The ingres error log
$II_SYSTEM/ingres/files/errlog.log shows a message "open() error 13".

This problem is caused by an error in the permissions on the work
directory structure (the iidbdb work directory gets protected 664 rather
than 777). The upgradedb procedure given above avoids this bug by
pre-creating the affected directory. Other databases have the work
directory created properly. The problem may be caused by the ingres
user's .cshrc file not containing a "umask 0" command, as is
recommended by the Getting Started installation manual.)

Problem 5: File extend conversion loop
Upgradedb will loop printing "file extend converting {table name}" over
and over.

This problem was observed when a damaged database had a system
catalog entry for a table, but the underlying file was missing. (The actual
error can be seen in the Ingres error log, errlog.log.) The upgradedb
procedure avoids this problem by remodifying all tables (broken tables
will produce an error during the modify, and the condition can be
corrected). If the situation occurs, it can be rectified by aborting
upgradedb; shutting down ingres; manually copying any valid not-yet-
upgraded table file to the missing filename, which you get from
errlog.log; starting up ingres; and rerunning upgradedb.

Page 37

Problem 6: "Failed, aborting" creating internal procedure
If upgradedb is aborted (perhaps by a system crash) during processing,
re-running upgradedb may produce the normal message "creating
internal procedure iiqef_alter_extension", followed by a "failed, aborting"
message. This will not happen all the time- only when upgradedb is
interrupted when it is nearly completed.

This problem appears to only be present in the 9712 genlevel of
OpenIngres 2.0. It is caused by a failure to detect that internal procedure
"iierror" already existed from the first, aborted run. The fix is available
from CA technical support.

The only known workaround is to restore the database from the
checkpoint taken in Step 12, and re-run the upgrade. Shut down Ingres;
delete the files from each data location of the database; un-tar each
checkpoint file(s) into its corresponding data location; copy the
aaaaaaaa.cnf file that you preserved, into the root data location and the
dump directory; restart Ingres; and redo the upgradedb. Use the infodb
output as a guide to which checkpoint files go with what data locations.
(If you are not used to working with checkpoint files, either get help from
Tech Support, or abort the entire upgrade; restore from backup; and
start over.)

Problem 7: iifile_info view not recreated
Upgradedb drops the iifile_info system catalog view but does not
recreate it.

This problem appears to only be present in the 9712 genlevel of Ingres
II. It is fixed (via patch) on some platforms; check with Tech Support. The
workaround is to create the view manually:

sql '-u$ingres' +U dbname

----- iifile_info view definition (2.0/9712) ----

create view iifile_info(table_name, owner_name,
file_name, file_ext,

location, base_id, index_id)as select r.relid,
r.relowner,

ii_tabid_di(reltid, reltidx), 't00', r.relloc,
r.reltid, r.reltidx

Page 38

from "$ingres". iirelation r where r.reltidx=0
and(mod((r.relstat/32),

(2))=0)union all select r.relid, r.relowner,
ii_tabid_di(reltid,

reltidx), 't00', r.relloc, r.reltid, r.reltidx from
"$ingres".

iirelation r where r.reltidx!=0 union all select
r.relid, r.relowner,

ii_tabid_di(reltid, reltidx), 't'
+charextract('0123456789abcdef',

mod((d.devrelocid/16), (16)) +1)
+charextract('0123456789abcdef',

mod((d.devrelocid), (16)) +1), d.devloc, r.reltid,
r.reltidx from

"$ingres". iirelation r, "$ingres". iidevices d where
r.reltidx=0

and(mod((r.relstat/32), (2))=0)and
d.devrelid=r.reltid and

d.devrelidx=r.reltidx and(mod((r.relstat/4194304),
(2))!=0)union all

select r.relid, r.relowner, ii_tabid_di(reltid,
reltidx), 't'

+charextract('0123456789abcdef',
mod((d.devrelocid/16), (16)) +1)

+charextract('0123456789abcdef', mod((d.devrelocid),
(16)) +1),

d.devloc, r.reltid, r.reltidx from "$ingres".
iirelation r, "$ingres".

iidevices d where r.reltidx!=0
and(mod((r.relstat/4194304), (2))!=0)

and d.devrelid=r.reltid and d.devrelidx=r.reltidx

--------- end of iifile_info view definition --------
-

Page 39

Problem 8: ALL to PUBLIC grants not created
Upgradedb preserves the ALL-to-ALL flag in iirelation that allows ALL to
PUBLIC access; but it neglects to create the individual Ingres II-style
permits in the iipermit table. The symptom is that the affected tables are
not visible in the QBF table listing except to the owner.

This problem was present in OpenIngres 1.2; it is not confirmed in Ingres
II. The cure is to simply re-issue the GRANT ALL to PUBLIC statements
at some convenient time after the upgrade is complete.

Page 40

The Unload/Reload Upgrade: Overview
The unload/reload upgrade avoids the upgradedb program (except for
iidbdb), in favor of dumping the Ingres 6.4 database(s) to flat files,
recreating the databases under Ingres II, and reloading them. This
approach has the rather chimerical advantage of starting your Ingres II
installation out with all new, fresh databases. The downside is that
substantially more time and disk space will be needed.

The unload/reload upgrade is slightly simpler than the upgradedb
upgrade, since there is no need to defend against real or imagined
upgradedb problems. The trickiest part of the unload/reload upgrade is
dealing with the front-end catalogs. These are dumped in Ingres 6.4
format, and cannot be loaded as is into an Ingres II database. So, the
Ingres II database is created without front-end catalogs. The catalogs
are reloaded in the Ingres 6.4 format, and upgradedb using the
upgradefe program.

The iidbdb is not unloaded and reloaded. That would be tantamount to a
cold install of the entire installation. Instead, iidbdb is upgraded with
upgradedb. This way, your existing users, locations, groups, roles, etc.
are preserved, and need not be re-entered.

Page 41

The Unload/Reload Upgrade
In this procedure, the notation [Each DB] means: "For each database,
not including the iidbdb: Become the DBA user for that database; CD to
the unload directory for that database that you created in step 1; and do
this step." If you are using Ingres Star, remember to include the CDB in
the list of databases. (The CDB is the coordinator database, the one that
usually starts with "ii".)

Step 1. [Each DB] Create Unload Directories
Create a directory for each database. This directory will be used for
holding various scripts the unloaded database, so you'll need plenty of
disk space. Usually the unloaded data is about the same size or a bit
smaller than the Ingres database; however compressed data can "blow
up" and take up much more room than the Ingres database. Make the
directory world writable.

mkdir /someplace/dbname

chmod 777 /someplace/dbname

Step 2. [Each DB] Run Unloaddb
Run unloaddb against each database. Remember that unloaddb do not
actually unload any data, it just creates copy-in and copy-out scripts. You
will run these scripts later. Ingres Star Note: You do a regular unloaddb
of the CDB, but an unloaddb /star of the DDB.

unloaddb dbname (regular db or CDB)

unloaddb ddbname/star (STAR distributed db)

Step 3. [Each DB] Bogus User Check
Examine the unload.ing and reload.ing scripts that unloaddb created.
Each script contains one line for any user who owns a database object.
Make sure that all the users listed are valid; old databases may well have
junk objects created by users who are no longer around.

If you find any obsolete users, delete those lines from unload.ing and
reload.ing; delete the cp{user}.in and cp{user}.out files; and you might as
well go into the database itself and clean out the junk objects.

Page 42

Step 4. [Each DB Including iidbdb] Optional Checkpoint
Checkpoint each database with ckpdb. This step is optional, as you are
going to take a system backup soon. It is a good idea to have a valid,
recent checkpoint on that backup tape. Remember to checkpoint the
iidbdb.

Step 5. Disable User Access
From here through the end of the upgrade, you need to turn off user
access to any database. How you do this is up to you - prevent user
logins, pull the network cable out of the box, whatever.

Step 6. Ingres-Down System Backup
Shut Ingres down. This MUST be a clean shutdown, leaving no
information in the Ingres transaction log to be redone or aborted later.
One way of doing this is to shut Ingres down. Then start it up and shut it
down again. Then check the recovery process log (II_RCP.LOG) for
"RCP Shutdown completed normally".

Now, take a system backup, using whatever dump command is
appropriate to your platform. You MUST make sure you include all Ingres
directories: data, checkpoint, journal, dump areas, and the
$II_SYSTEM/ingres directory containing Ingres files and executables.
Remember to save your application directories too, as they contain
Ingres 6.4 applications. Watch out for symbolic links and cross-mounts,
especially in an older installation; make sure you are saving real data
and not a symbolic link. Older installations which have been through
disk-space panics may well have various Ingres related areas linked to
unexpected places.

If you normally start up Ingres at boot time, include the root filesystem in
your backups. Or, at least make a manual copy of any Ingres boot time
startup and shutdown scripts.

It is a good idea, if possible, to do this step in single-user mode, after
cleaning the tape drive. Using brand new, never-used tapes. Do this
twice and check both tapes for validity prior to proceeding.

After your backup is finished, start up Ingres again.

Page 43

Step 7. [Each DB] Unload
For each database, run the "unload.ing" script created by unloaddb. This
will actually unload the database data into your unload directory.

Step 8. [Each DB] Optional Statdump
Only do this step if you can't afford the time to run a full optimizedb run
against the database when the upgrade is done. You can dump out the
existing optimizer statistics and reload them after the upgrade. You won't
get some of the new Ingres II metrics this way, but it's better than
nothing. If you have enough time to run optimizedb against your
databases, it's preferred that you omit this step. Run statdump with the -
o flag to a file for each database:

statdump -o dbname.stats dbname

Step 9. [Each DB] Record INFODB
Run infodb against each database, saving the output. You'll need this
later so that you can extend the re-created database to its original
locations. You'll also want to know if the database was originally
journaled or not.

infodb dbname >infodb.out

Step 10. [Each DB] Destroy the database
Destroy each database using destroydb.

Page 44

Step 11. Clean iidbdb
Become user ingres, and run a subset of the upgradedb's Object
Cleaning step against the master database iidbdb. We will assume that
there are no user created objects in the iidbdb to deal with (there
shouldn't be!).

statdump '-u$ingres' -zdl iidbdb

sysmod -s iidbdb

verifydb -mrun -sdbname iidbdb -opurge

verifydb -mrun -sdbname iidbdb -odbms

ckpdb -d -j -s iidbdb

You may get some warnings from verifydb that should be ignored. See
upgradedb Step 9 (Object Cleaning) for details.

Step 12. Record Ingres Configuration
As user ingres, do a "showrcp" command and record the results. Also,
record the contents of the rundbms.opt file in $II_SYSTEM/ingres/files.
You will use this information as a rough guideline for configuring Ingres
II. The Ingres II installation procedure does not preserve your existing
Ingres tuning parameter settings, which is why you should record your
current values now.

Step 13. Ingres 6.4 Shutdown
Shut down ingres using iishutdown.

Step 14. Disable Ingres Startup
If your machine normally starts Ingres automatically at boot time, you
should turn auto-starting off. You do not want an unfortunately timed
system crash to try to start Ingres when it is partially upgraded.

On most UNIX platforms, there will be a file in /etc/init.d or /sbin/init.d
that does Ingres startup and shutdown; just put an "exit 0" at the top of
that file. You will probably have to be root or have your system
administrator do this step.

Page 45

While you have the system administrator around, make sure that your
operating system is configured for Ingres II. (See "System Administration
Preparation", page 16) If you need to reboot to increase the shared
memory limit, do it now.

Step 15. Preserve Site Modifications
Many sites install a variety of customizations in their $II_SYSTEM
directory tree. The most common customizations are added or changed
termcap and keyboard map files in $II_SYSTEM/ingres/files. You may
also have customizations in the bin or utility directory. Remember to
check for local collation sequence files. Ideally, save the original collation
definition files; but you should save the compiled files in
$II_SYSTEM/ingres/files/collation as well.

Copy any customized files to a safe place, meaning NOT /tmp and NOT
anywhere underneath the $II_SYSTEM/ingres directory. If you are not
entirely positive that you can identify all customized files, do this:

Delete all *.log and *.LOG files from $II_SYSTEM/ingres/files. Then,
copy the entire contents of the $II_SYSTEM/ingres/bin,
$II_SYSTEM/ingres/files, and $II_SYSTEM/ingres/utility directories
somewhere safe. This is copying more than is necessary, but you can
always delete your copy later. You may not discover you need some
strange Vision template or keyboard map for weeks, so it is a good idea
to archive off the non-database parts of the $II_SYSTEM/ingres directory
tree permanently.)

If you choose this copy method, this tar command will copy everything
you are likely to need:

cd $II_SYSTEM/ingres

tar cf - bin files utility | (cd /someplace/safe;tar
xf -)

Page 46

Step 16. Login Fixups
Make sure that the ingres user login sets LD_LIBRARY_PATH (or your
platform's equivalent) if it is needed, and make sure that it does not use
ingprenv1 (or install your ingprenv1 substitute). If you have not done this
ahead of time, you should do it now. (See "System Administration
Preparation", page 16).

You may as well check all your database owner (DBA) logins now too.
Make sure that all users are properly set up for Ingres II.

Step 17. Record Default Locations
The upgrade runs the smoothest if you delete away the Ingres 6.4
executables and control files, including the Ingres environment variables.
This means that you'll have to re-enter your default Ingres locations, so
you had better know what they are. Do "ingprenv" and record the values
of II_DATABASE, II_CHECKPOINT, II_JOURNAL, and II_DUMP.

Step 18. Clean off Ingres 6.4
Remove the Ingres 6.4 bin, files, lib, and utility directories. This gives you
a fresh start for Ingres II.

cd $II_SYSTEM/ingres

rm -rf bin files lib utility dbtmplt version.rel
admin

Step 19. Create Work Location.
Ingres II asks you to create an Ingres location for temporary files and
sorting. The installation procedure will create the directories for you.
However, in certain situations (not isolated as yet!), the installation
procedure does not properly protect the directories, leading to
upgradedb failure on iidbdb. This is a nuisance, so you might as well
create the work location by hand. Refer to the Database Administrator's
Guide, Chapter 4, "Using Work Locations" for information on placement
of your default work location. As user ingres, assuming a work location
of /work:

mkdir /work/ingres /work/ingres/work

mkdir /work/ingres/work/default

Page 47

work/ingres/work/default/iidbdb

chmod 755 /work/ingres

chmod 700 /work/ingres/work

chmod 777 /work/ingres/work/default

chmod 777 /work/ingres/work/default/iidbdb

Step 20. Install Ingres II
Use the Ingres II installation instructions for your platform and install
Ingres II. Enter the directory locations that you recorded in Step 17
(Record Default Locations) for the default database areas (ii_database,
ii_checkpoint, ii_journal, and ii_dump). During the DBMS server setup, it
will ask you if you want to upgrade all your databases; answer No.

The install procedure will upgradedb the iidbdb anyway; if this fails you
probably have something substantially wrong (but see "Upgradedb
Problems", above).

If you plan on installing a patch to Ingres II, you should say NO when
ingbuild asks you whether you want to set up Ingres II. Instead, exit
ingbuild. Install the patch using the patch instructions. Then, re-run
ingbuild. Select Current, then SetupAll. By doing this, if there is a fix to
upgradedb or the installation setup in the patch, you will setup with the
fixed version and not the original.

Step 21. Restore Site Modifications
If your site modified the checkpoint template cktmpl.def, you need to
recreate your modifications for Ingres II. You can't use the cktmpl.def
from Ingres 6.4, as the file format has been expanded in Ingres II. You
will have to start over, using your Ingres 6.4 modifications as a guide.
The Database Administrator's Guide has a section on cktmpl.def.

Likewise, if your site uses the archiver exit script acpexit, you need to
modify the template shipped with Ingres II (acpexit.def), and install it as
acpexit in $II_SYSTEM/ingres/files.

Page 48

Go to your safe place from Step 15 (Preserve Site Modifications), and
restore any files that are specific to your site. In particular, make sure
that you restore any local collation sequence files to
$II_SYSTEM/ingres/files/collation. Re-run aducompile on the sequence
definitions if you have them; if not, you can reuse the compiled collation
sequences from Ingres 6.4.

Step 22. Configure Ingres II
Run CBF (Configuration-By-Forms) and do a first-cut configuration of
your Ingres II installation. Use the rundbms.opt and showrcp information
you recorded earlier as a guideline. Do not worry about getting things
exactly right the first time; you are mainly trying to get a reasonable
configuration. Refer to your System Reference Guide for information
about CBF and the various tuning parameters.

.

Step 23. Ingres Net Setup
If you are accessing Ingres installations remote to this site, run netutil to
recreate the vnode definitions for those remote installations. If you have
NFS client-only installations that you have not set up yet, run ingmknfs to
set them up.

TIP 1: DERIVED PARAMETERS ARE RECALCULATED WHEN VALUES THEY DEPEND ON

ARE CHANGED. IF YOU SET A DERIVED PARAMETER, YOU MAY WANT TO "PROTECT"
IT AGAINST BEING UNEXPECTEDLY CHANGED.

TIP2: INGRES II TENDS TO CALCULATE VERY LARGE LOCK LIMIT AND RESOURCE

LIMIT DERIVED PARAMETERS. THIS IS APPROPRIATE FOR SITES USING ROW-LEVEL

LOCKING, BUT MAY BE EXCESSIVE FOR UPGRADED SITES. CONSIDER CUTTING

THESE LIMITS BACK CLOSE TO INGRES 6.4 LEVELS.

TIP 3: ON OS-THREADS PLATFORMS, DO NOT TURN ON ASYNC_IO; AND DO NOT

DECLARE THE II_NUM_SLAVES INGRES VARIABLE.

TIP 4: INGRES II CAN SUPPORT LARGER QEF_SORT_MEM VALUES THAN INGRES

6.4. INGRES II DOES NOT NEED AS MUCH QSF_MEMORY AS INGRES 6.4 DID. OS-
THREAD PLATFORMS SHOULD NOT REDUCE QUANTUM; UNLIKE INGRES 6.4,
REDUCING QUANTUM ON OS-THREAD PLATFORMS WILL NOT IMPROVE

RESPONSIVENESS.

Page 49

If your platform needs "ingvalidpw" (the setuid-root password checker
program), you should re-create it now by running mkvalidpw. Refer to
your System Reference Guide or your platform release notes. You can
defer this step until later, unless you are running Ingres Star.

Step 24. Start Ingres II
The installation procedure generally leaves the Ingres II servers stopped,
so start them again. Remember that the startup command is "ingstart" in
Ingres II, not "iistartup".

Step 25. [Each DB] Recreate Databases
Recreate each user database, omitting the front-end catalogs. (The
front-end catalogs will be reloaded, then upgraded, later on.) Before
creating each database, refer to the infodb output saved in Step 9
(Record Infodb); if the "ROOT" data location is not ii_database, you have
to specify it in the createdb command:

createdb dbname -dlocation -f nofeclients

(Remember you specify the location name, not the directory path.)

If the "ROOT" data location is ii_database, you omit the -d option.

Star note: Do not run createdb on the CDB. Instead, run createdb /star
on the DDB.

Step 26. [Each DB] Extend Databases
Refer to the infodb output saved in Step 9 (Record Infodb). If the
database was extended to any locations other than the default locations,
run accessdb now (as user ingres) and extend the newly created
databases to the same locations. The locations will already exist, you
just need to extend the databases to use them.

Page 50

Step 27. [Each DB] Fix FE Reload Script
Edit the file cp_ingre.in and locate the line that looks like:

\include /ing64/ingres/files/iiud64.scr

(Your directory path will vary.) Delete this line and save cp_ingre.in.
Since you did not create the database with front-end catalogs, you don't
need to drop them, which is what iiud64 attempts to do.

Step 28. [Each DB] Reload
Run reload.ing for each database. It's prudent to tee the reload to a log
file so that you can check for errors later. Using the C-Shell:

reload.ing |& tee reload.log

Star note: Reload the CDB and all "real" local databases first. Then,
reload the DDB's.

Step 29. [Each DB] Front-End Upgrade
Run upgradefe on each database, bringing the front-end catalogs up to
Ingres II level.

upgradefe dbname INGRES

The word INGRES should be supplied exactly as shown.

Step 30. [Each DB] Reapply Optimizer Statistics
Run whatever your normal procedure is for generating optimizer
statistics with the optimizedb command.

If you are short of time, and you dumped out your Ingres 6.4 statistics in
Step 8 (Optional Statdump), read the Ingres 6.4 statistics back in:

optimizedb dbname -i dbname.stats

Ingres II computes some additional statistics for better query
optimization, so it's better to re-run a regular 2.0 optimizedb. Ingres 6.4
statistics are better than nothing, though.

Page 51

Step 31. [Each DB including iidbdb] Checkpoint
Checkpoint each database, using the +j flag to turn on journaling if the
database was journaled before. (Refer to the infodb output from Step 9
to see which databases were journaled).

Step 32. Application Upgrade
Install the Ingres II versions of all your applications, using whatever
procedure is normal for your site. Then, restore user logins, and resume
normal operation.

This completes the unload/reload upgrade procedure.

Checkpoint
TIP

ALWAYS
TURN ON

JOURNALING

FOR THE

MASTER

DATABASE,
IIDBDB.

Page 52

oi_prep.sh shellscript
This attachment is the oi_prep.sh shellscript mentioned in the upgradedb
procedure, step 9 (Object Cleaning).

-------------- start of oi_prep.sh ------------------
-

#!/bin/sh

Prepare for Ingres 6.4 -> Ingres II update.

Usage: oi_prep.sh dbname

This script implements Step 9 ("Object Cleaning")
of the upgradedb procedure.

You run it in the "unload" work directory that
contains the extracts of the unloaddb for the
database. It should be run as the DBA user for the
database.

Its job is to prep a database for the Ingres II
update, by dropping all nonessential database objects
and running some verification procedures. The
following is done for the database:

- Drop all statistics

- Drop all views, procedures, rules, and dbevents
for all users.

- Reapply all storage structures.

- Sysmod the database

- Run verifydb -odbms_check to double-check the
system catalogs.

- Run infodb and make sure the header says VALID.

The idea is that the less work upgradedb has to do,
the more likely it is that it will do it right!

This script expects to see files named according to
the naming conventions given in the upgradedb
procedure section. It should not be too hard to adapt
to different circumstances if necessary.

Remember the database name:

dbName=$1

if [-z "$dbName"] ; then

echo "Usage: oi_prep.sh dbname"

exit 1

Page 53

fi

User has to have II_SYSTEM defined, and Ingres must
be up.

if [-z "$II_SYSTEM" -o ! -d "$II_SYSTEM/ingres"] ;
then

echo 'II_SYSTEM must be defined for Ingres.'

exit 1

fi

sql iidbdb </dev/null >/dev/null 2>&1

if [$? != 0] ; then

echo 'Ingres is not running, or the path is not set
up properly.'

echo 'Please make sure that Ingres has been started.'

exit 1

fi

dba=`infodb $dbName | sed -n -e '/Database
:/s/^.(.*,\([^)]*\)).*$/\1/p'`

User has to be tmsdba.

userName=`IFS="()";set - \`id\`;echo $2`

if ["$userName" != "$dba"] ; then

echo "You are not the dba $dba for database $dbName"

exit 1

fi

Decide which awk to use

AWK=awk

mach=`uname -s`

if ["$mach" = 'SunOS'] ; then

AWK=nawk

fi

Dump optimizer statistics

statdump -zdl $dbName

Generate list of all views, rules, procedures, and
dbevents by owner.

Drop them all, they will be reapplied eventually
(after the upgrade).

Note that by just dumping out all the view names,
we may get errors if a base view is dropped before a
dependent view. It seems a lot easier to just accept
that and tell the user to ignore any drop errors. The

Page 54

alternative is to grind around in iidbdepends to
detect and deal with dependent views. Ugh.

While we're at it we might as well pick up the names
of tables with uncompressed HEAP storage structure.
In Ingres 6.4, unloaddb does not output any MODIFY
command for such tables. In order to touch all tables
(to ensure their goodness), we'll find uncompressed
heaps and arrange to re-heap them while we drop other
objects for that owner.

sql $dbName <<!EOF!

\\script /tmp/stuff.$dbName.$$

SELECT table_owner,'VIEW',table_name FROM iitables

WHERE table_type='V' AND table_owner <> '\$ingres'

UNION ALL SELECT dbp_owner,'PROCEDURE',dbp_name FROM
iiprocedure

WHERE dbp_owner<>'\$ingres'

UNION ALL SELECT rule_owner,'RULE',rule_name FROM
iirule

WHERE rule_owner<>'\$ingres'

UNION ALL SELECT event_owner,'DBEVENT',event_name
FROM iievent

WHERE event_owner<>'\$ingres'

UNION ALL SELECT table_owner,'HEAP',table_name FROM
iitables

WHERE table_type='T' AND table_owner<>'\$ingres'

AND storage_structure = 'HEAP' AND is_compressed =
'N'

ORDER BY 1,2,3;

COMMIT;

\\go

\\script

\\quit

!EOF!

if [$? != 0] ; then

echo

echo "SQL returned error while processing database
$dbName"

exit 2

fi

Transform output into "owner WHAT object-name"

Page 55

/bin/ed /tmp/stuff.$dbName.$$ <<'!EOF!'

1,/^+---/d

1,/^+---/d

/^+---/,$d

1,$s/|//

1,$s/ *|/ /

1,$s/ *|/ /

1,$s/|//

w

q

!EOF!

Generate awk script to take the stuff just dumped
and make DROP commands:

cat - >/tmp/awk$$ <<'!XX!'

BEGIN {curOwner=""}

{

if ($1 != curOwner) {

 if (curOwner != "") {

print "\\quit";

print "!EOF!";

print "if [\$? != 0] ; then";

print " echo 'Error running cleanup SQL'";

print " exit 1";

print "fi"

 }

 curOwner = $1;

 print "sql -u" curOwner,dbName,"<<'!EOF!'";

}

if ($2 != "HEAP") {

 print "DROP",$2,$3,";COMMIT;\\p\\g";

} else {

 print "MODIFY",$3,"TO HEAP;COMMIT;\\p\\g";

}

}

END {

if (curOwner != "") {

 print "\\quit";

Page 56

 print "!EOF!";

}

}

!XX!

This awk call is known to be notwork on SunOS 4.x,
but should be OK pretty much everywhere else. On
SunOS 4.x you have to juggle the supplied variable
(dbName) to a different spot in the command line.

$AWK -v "dbName=$dbName" -f /tmp/awk$$
/tmp/stuff.$dbName.$$

>/tmp/drop.$dbName.$$

if [$? != 0] ; then

 echo 'awk error, perhaps your awk is strange?'

 exit 3

fi

Ok, drop all sorts of stuff, re-heap heaps:

if [-s /tmp/drop.$dbName.$$] ; then

 sh /tmp/drop.$dbName.$$

 if [$? != 0] ; then

echo "Error dropping objects from $dbName,
review the output log"

exit 3

 fi

fi

Reapply storage structures, and incidentally drop
indexes. Upgradedb doesn't have any problems with
indexes, but you really ought to re-modify after the
upgrade anyway, so save the index creates until then
(Ingres II makes them more quickly anyway!)

for i in *_modify.sql ; do

 # Guard against no *_modify.sql files at all

 if ["$i" != '*_modify.sql'] ; then

Guard against empty files

if [-s "$i"] ; then

 theUser=`expr "$i" : '\(.*\)_modify\.sql'`

 sql "-u$theUser" $dbName <$i

 if [$? != 0] ; then

echo "Error remodifying $dbName ($i)"

exit 3

Page 57

 fi

fi

 fi

done

sysmod $dbName

if [$? != 0] ; then

 echo

 echo "Sysmod error, perhaps database $dbName is
still in use."

 echo 'Make sure ALL users are locked out. Shut down
and restart'

 echo 'Ingres if necessary to ensure this. Then, try
again.'

 exit 3

fi

Do verifydb and infodb.

verifydb -mrun -sdbname $dbName -opurge

verifydb -mrun -sdbname $dbName -odbms_check

infodb $dbName | grep VALID

if [$? = 0] ; then

 echo

 echo "Database $dbName seems OK, ready for upgrade
if verifydb output

was OK."

 echo

else

 echo

 echo "Database $dbName does not appear to be
consistent."

 exit 4

fi

rm -f /tmp/stuff.$dbName.$$ /tmp/drop.$dbName.$$
/tmp/awk$$

---------------- end of oi_prep.sh ------------------
-

Computer Associates International, Inc. Page 58

Reserved Words
The following provides a complete table listing of Ingres II key words and
indicates the contexts in which they are reserved. This list enables you to
avoid assigning object names that conflict with reserved words.

NOTE: THE KEY WORDS IN THIS LIST DO NOT NECESSARILY CORRESPOND TO SUPPORTED

INGRES FEATURES. SOME WORDS ARE RESERVED FOR FUTURE OR INTERNAL USE, AND

SOME WORDS ARE RESERVED TO PROVIDE BACKWARD COMPATIBILITY WITH OLDER

FEATURES.

In the table that follows, the column headings have the following
meanings:

NON 6.4 These keywords were not included in Ingres 6.4
keyword reserved lists.

ISQL Interactive SQL. These keywords are reserved
by the DBMS.

ESQL Embedded SQL. These keywords are reserved
by the SQL preprocessors.

IQUEL Interactive QUEL. These keywords are
reserved by the DBMS.

EQUEL Embedded QUEL. These keywords are
reserved by the QUEL preprocessors.

4GL These keywords are reserved in the context of
SQL or QUEL in 4GL routines.

Note: The ESQL and EQUEL preprocessors also reserve forms
statements.

NON SQL QUEL

Reserved in: 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

abort * * * * * *

activate * *

add * * *

addform * *

after * * *

all * * * * *

alter * *

Computer Associates International, Inc. Page 59

NON SQL QUEL

Reserved in: 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

and * * * * *

any * * * * *

append * * *

array * *

as * * * * * *

asc * *

at * * * * * *

authorization * *

avg * * * * *

avgu * * *

before * *

begin * * * * *

bell * * *

between * * *

breakdisplay * *

by * * * * * *

byref * * * * *

call * * * *

callframe * * *

callproc * * * *

cascade * * *

check * * *

clear * * * *

clearrow * * * *

close * * *

column * * *

command * *

comment * *

commit * * *

Computer Associates International, Inc. Page 60

NON SQL QUEL

Reserved in: 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

committed * * *

connect * *

constraint * * * *

constraints * *

continue * *

copy * * * * * *

count * * * * *

countu * * *

create * * * * * *

current * * *

current_user * * *

cursor * *

datahandler * *

dbms_password * * *

declare * * * *

default * * * * *

define * * * *

delete * * * * * * *

deleterow * * * *

desc *

describe * * *

descriptor *

destroy * * *

direct * * *

disable * * *

disconnect * *

display * * * *

distinct * * *

distribute * *

Computer Associates International, Inc. Page 61

NON SQL QUEL

Reserved in: 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

do * * *

down * *

drop * * *

else * * *

elseif * * *

enable * * *

end * * * * * *

end-exec * *

enddata * *

enddisplay * *

endforms * *

endif * * *

endloop * * * * *

endretrieve *

endselect *

endwhile * * *

escape * * *

exclude * *

excluding * * * *

execute * * * *

exists * * *

exit * * *

fetch * *

field * * *

finalize * *

for * * * * *

foreign * * * *

formdata * *

forminit * *

Computer Associates International, Inc. Page 62

NON SQL QUEL

Reserved in: 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

forms * *

from * * * * * *

full * * * *

get * *

getform * *

getoper * *

getrow * *

global * * * *

goto *

grant * * *

granted * * * *

group * * *

having * * *

help * * *

help_forms * * *

help_frs * *

helpfile * * * *

identified * *

if * * * *

iimessage * * *

iiprintf * * *

iiprompt * * *

iistatement * *

immediate * * * *

import * *

in * * * * *

include * *

index * * * * * *

indicator *

Computer Associates International, Inc. Page 63

NON SQL QUEL

Reserved in: 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

ingres *

initial_user * * *

initialize * * * *

inittable * * * *

inner * * * *

inquire_4gl * * *

inquire_equel *

inquire_forms * * *

inquire_frs * *

inquire_ingres * * * * *

inquire_sql * *

insert * * *

insertrow * * * *

integrity * * * *

into * * * * * *

is * * * * * *

isolation * *

join * * * *

key * * * * *

left * * * *

level * * * * *

like * * *

loadtable * * * *

local * *

max * * * * *

menuitem * *

message * * * * *

min * * * * *

mode * * *

Computer Associates International, Inc. Page 64

NON SQL QUEL

Reserved in: 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

modify * * * * * *

module * *

move * *

natural * * *

next * * *

noecho * * *

not * * * * *

notrim * *

null * * * * *

of * * * * * *

off * * *

on * * * * * *

only * * *

open * * *

option *

or * * * * *

order * * * * * *

out * *

outer * *

param *

permit * * * *

prepare * *

preserve * * *

primary * * * *

print * * *

printscreen * * * *

privileges *

procedure * * * *

prompt * * * *

Computer Associates International, Inc. Page 65

NON SQL QUEL

Reserved in: 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

public * *

purgetable * * * *

putform * *

putoper * *

putrow * *

qualification * * *

raise * * *

range * * *

read * * *

redisplay * * * *

references * * * *

referencing * *

register * * * * * *

relocate * * * * * *

remove * * * * *

rename * *

repeat * * * * *

repeatable * * *

repeated * *

replace * * *

replicate * *

restrict * * *

resume * * * *

retrieve * * *

return * * *

revoke * * *

right * * * *

role * * * *

rollback * * *

Computer Associates International, Inc. Page 66

NON SQL QUEL

Reserved in: 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

rows * * *

run * * *

save * * * * * *

savepoint * * * * * *

schema * * *

screen * * * *

scroll * * * *

scrolldown * *

scrollup * *

section *

select * * *

serializable * *

session * * * *

session_user * * *

set * * * * * *

set_4gl * * *

set_equel *

set_forms * * *

set_frs * *

set_ingres * * * * *

set_sql * *

sleep * * * *

some * * *

sort * * *

sql *

stop *

submenu * *

sum * * * * *

sumu * * *

Computer Associates International, Inc. Page 67

NON SQL QUEL

Reserved in: 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

system * * *

system_user * *

table * * *

tabledata * *

temporary * * *

then * * * *

to * * * * * *

type * *

uncommitted * * *

union * * *

unique * * * * * *

unloadtable * * * *

until * * * * * *

up * *

update * * * *

user * * *

using * *

validate * * * *

validrow * * * *

values * * *

view * * * *

when * * *

whenever *

where * * * * * *

while * * *

with * * * * * *

work * *

write * *

Computer Associates International, Inc. Page 68

Double Keyword NON SQL QUEL

Reserved in: 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

add privileges * *

after field * * *

alter default * * *

alter group * * *

alter location * * * *

alter profile * * * *

alter role * * *

alter security_audit * * * *

alter table * * * *

alter user * * * *

array of * *

before field * * *

begin declare * *

begin exclude * *

begin transaction * * * * * *

by group * *

by role * * *

by user * * *

call on * *

call procedure * *

class of * *

clear array * *

close cursor * * *

comment on * * * *

connect to * *

copy table * *

create dbevent * * *

create domain * *

create group * *

Computer Associates International, Inc. Page 69

Double Keyword NON SQL QUEL

Reserved in: 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

create integrity * * *

create link * *

create location * * * *

create permit * * *

create procedure * *

create profile * * * *

create role * * *

create rule * * *

create security_alarm * * * *

create synonym * * * *

create user * * * *

create view * * *

current installation * *

define cursor *

declare cursor *

define integrity * * *

define link *

define location *

define permit * * *

define qry * * *

define query * *

define view * * *

delete cursor * *

describe form * *

destroy integrity * * *

destroy link *

destroy permit * * *

destroy table *

destroy view * *

Computer Associates International, Inc. Page 70

Double Keyword NON SQL QUEL

Reserved in: 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

direct connect * * * *

direct disconnect * * * *

direct execute * * *

disable security_audit * * * *

disconnect current * *

display submenu * * *

drop dbevent * * *

drop domain * *

drop group * *

drop integrity * * *

drop link * * *

drop location * * * *

drop permit * * *

drop privileges * *

drop procedure * *

drop profile * * * *

drop role * * *

drop rule * * *

drop security_alarm * * * *

drop synonym * * * *

drop user * * * *

drop view * * *

each row * *

each statement * *

enable security_audit * * * *

end exclude * *

end transaction * * * * * *

exec sql * *

execute immediate * *

Computer Associates International, Inc. Page 71

Double Keyword NON SQL QUEL

Reserved in: 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

execute on * *

execute procedure * *

foreign key * *

for deferred * *

for direct * *

for readonly * *

for retrieve * *

for update *

from group * *

from role * *

from user * *

full join * * *

full outer * * *

get attribute * *

get data * *

get dbevent * * *

get global * *

global temporary * *

help all * *

help comment * *

help integrity * *

help permit * *

help table * *

help view * *

identified by * *

inner join * * *

is null *

isolation level * * *

left join * * *

Computer Associates International, Inc. Page 72

Double Keyword NON SQL QUEL

Reserved in: 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

left outer * * *

modify table * *

not like * * * *

not null * *

on commit * * * *

on current * *

on database * *

on dbevent * * *

on location * * *

on procedure * *

only where *

open cursor * * *

order by *

primary key * *

procedure returning * * *

put data * *

raise dbevent * * *

raise error *

read only * *

read write * *

register dbevent * * *

register table * *

register view * * *

remote
system_password

 * *

remote system_user * *

remove dbevent * * *

remove table * *

remove view * * *

Computer Associates International, Inc. Page 73

Double Keyword NON SQL QUEL

Reserved in: 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

replace cursor * * * *

resume entry * * *

resume menu * * *

resume next * * *

resume nextfield * * *

resume previousfield * * *

retrieve cursor * * *

right join * * *

right outer * * *

run submenu * * *

send userevent * *

session group * *

session role * *

session user * *

set aggregate * * *

set attribute * *

set autocommit * * *

set cache * * *

set connection * * * *

set cpufactor * * *

set date_format * * *

set ddl_concurrency * *

set deadlock * * *

set decimal * * *

set flatten * * *

set global * *

set io_trace * * *

set j_freesz1 * * *

set j_freesz2 * * *

Computer Associates International, Inc. Page 74

Double Keyword NON SQL QUEL

Reserved in: 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

set j_freesz3 * * *

set j_freesz4 * * *

set j_sortbufsz * * *

set jcpufactor * *

set joinop * * *

set journaling * * *

set lock_trace * * *

set lockmode * * *

set logdbevents * *

set log_trace * * *

set logging * * *

set maxconnect * * *

set maxcost * * *

set maxcpu * * *

set maxidle * *

set maxio * *

set maxpage * * *

set maxquery * * *

set maxrow * *

set money_format * * *

set money_prec * * *

set nodeadlock * * *

set noflatten * * *

set noio_trace * * *

set nojoinop * * *

set nojournaling * * *

set nolock_trace * * *

set nologdbevents * *

set nolog_trace * * *

Computer Associates International, Inc. Page 75

Double Keyword NON SQL QUEL

Reserved in: 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

set nologging * * *

set nomaxconnect * * *

set nomaxcost * * *

set nomaxcpu * * *

set nomaxidle * * *

set nomaxio * * *

set nomaxpage * * *

set nomaxquery * * *

set nomaxrow * * *

set nooptimizeonly * * *

set noprintdbevents * *

set noprintqry * * *

set noprintrules * *

set noqep * * *

set norules * *

set nosql * *

set nostatistics * * *

set notrace * * *

set optimizeonly * * *

set printdbevents * *

set printqry * * *

set qbufsize * * *

set qep * * *

set query_size * * *

set random_seed * * *

set result_structure * * *

set ret_into * * *

set role * *

setrow deleted * *

Computer Associates International, Inc. Page 76

Double Keyword NON SQL QUEL

Reserved in: 6.4 ISQL ESQL 4GL IQUEL EQUEL 4GL

set rowlabel_visible * *

set rules *

set session * * *

set sortbufsize * * *

set sql * *

set statistics * * *

set trace * * *

set transaction * *

set update_rowcount * * *

set work * *

system user * *

to group * *

to role * *

to user * * *

user authorization * *

with null *

with short_remark * *

	Table of Contents
	Disclaimer
	Credits
	Introduction to Ingres II
	Planning Your Upgrade
	Hardware Issues - Planning, Testing and
	Application Issues
	Type of Upgrade
	Getting Started
	Initial Application Preparation
	New Reserved Words
	Report Writer syntax change

	Loading The Ingres II Development Installation
	Trailing quote missing from copyapp/copyform output

	Moving Databases
	Additional Application Preparation
	UPDATE FROM semantics change
	Decimal constant semantics change
	Greater sensitivity to BYREF errors
	Journaling ON by default
	Greater sensitivity to arithmetic errors
	Free-space management pages
	4GL TABLE_KEY type conversions
	User Defined Datatype changes
	Report Writer runtime parameter errors

	System Administration Preparation
	Shared library search path
	UNIX kernel parameters
	Ingres startup and shutdown
	ingprenv replaces ingprenv1
	System monitoring shellscripts
	Checkpoint template changes
	Archiver exit shellscript
	Transaction log size
	Backup and Restore
	Testing And Practicing

	The Upgradedb Upgrade - A Quick Overview
	The Upgradedb Upgrade Procedure
	Upgradedb Problems
	The Unload/Reload Upgrade: Overview
	The Unload/Reload Upgrade
	oi_prep.sh shellscript
	Reserved Words
	Print This Document
	Visit inquire_ingres

